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Foreword by Christian Walter

Nowadays, firmware is one of the most critical parts within every device 

and every security concept. Typically, x86 firmware is hidden from the 

user, and little to no interaction is needed. Firmware has been closed 

source for the last 20 years. Whereas there are some exceptions to the 

general rule, the core parts of firmware are and will most likely remain 

closed source in the near future. From an outside perspective, this is not 

logical. Today, most of the software stack running on x86 platforms can 

be open sourced, beginning from the bootloader through the operating 

system up to the application level. Large hyperscalers make open source 

a requirement for some parts, and consumers love the freedom that open 

source software provides to them. Firmware is the last bastion that has not 

fallen. However, in recent years, the open source firmware community has 

leaped forward; thus, the industry is changing. Hyperscalers adopt open 

source firmware as the de facto firmware standard, and customers can buy 

open source firmware-enabled products off the shelf.

The idea of open source is not to open up the existing code base. It is 

rather about giving the community the ability to develop and maintain 

the code themselves. Two things are needed to reach this goal: sharing 

knowledge and providing the technical documentation. Obviously, 

both influence each other. Technical documentation is something that 

hardware vendors, OEMs, and ODMs can provide and are responsible for. 

This documentation enables developers to write the actual code and thus 

produce and maintain open source firmware. It is impossible, or at least 

extremely complicated, to write proper firmware code without technical 

documentation. Technical documentation is not about opening up the 
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intellectual property but rather providing a path to bring up and configure 

the hardware components.

In addition, the community needs knowledge and experienced people 

who share this knowledge. Sharing knowledge enables others to become 

firmware developers, to understand the concepts, and ultimately to grow 

the community. Firmware and its development are among the most 

complex software systems a developer can dive into. Even though most of 

the components themselves are not complicated, the interaction between 

them makes it complex. Keeping this technical documentation closed 

source makes the components (unnecessarily) complicated.

This book shares some of the missing pieces in system firmware 

development and guides the reader through various topics. We are 

engineers who are passionate about open source and driving this effort 

forward.

foreword by ChrisTian walTer



xv

Preface

Firmware is the first piece of code that runs on the target hardware after 

the end user has turned on a device. Depending on the types of target 

hardware, the operations being performed by the firmware may differ, but 

the fundamental operations of firmware remain the same across the target 

hardware: performing the bare minimal hardware initialization and either 

waiting for host-centric communication to initiate or handing off control to 

the high-level system software that allows the end-user interaction. Based 

on the target market segment, an OS can have multiple virtual machines, 

and/or various types of applications are installed that satisfy the end-user 

needs. Although the control goes to the OS, an instance of the firmware 

is still alive and available to manage a few critical tasks that for OS-based 

applications or drivers cannot perform.

Over time, CPU architectures have gotten more complicated, and 

platform requirements have evolved. This has pushed the firmware 

boundary and caused firmware to extend its services too.

Back in the 1950s, the only possible way to instruct a computer system 

to perform some operation was using assembly language. The processors 

were simple enough, and hence the expectations from the firmware were 

also minimal. Porting to different kinds of CPUs involved redundant effort. 

In the 1970s, with the evolution of microprocessors, which demanded 

the enhancement of firmware features, all firmware development started 

migrating to the low-level system programming language C. Later C 

became the de facto standard for firmware development as it’s easily 

ported from one generation to the next. Since then, a different flavor of 
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a C-based proprietary technology or framework evolved that made the 

hardware programming easier and created an abstraction such that it’s 

easy for programmers to contribute to the system programming without 

a deep understanding of the hardware. When technology evolves in an 

enclosed environment like this, it actually limits the spread of specialized 

knowledge and positively affects the entire ecosystem.

In the 2010s, access to the Internet became cheaper, and hence 

demands for personal computing devices were booming. With new sets 

of devices becoming popular, the ecosystem was changing. Statistics 

suggest that between 2000 and 2019 in the United States the number of 

Internet users tripled. Having more computing devices meant demand 

for advanced user experiences. For example, an instant system response 

refers to less device latency, trillions of data transfers in seconds requires 

secure systems, and more users means the backend server capacity needs 

to be enhanced. These are all the driving forces for the industry to look 

beyond the traditional system development model and demand more 

transparent development of the system, be it hardware, firmware, or 

software. With the openness in the firmware development approach, many 

product differentiating ideas are evolving and intercepting in firmware 

which are enough to challenge the existence of traditional System 

Firmware development approach. This demands a revamp of the firmware 

development model. We wrote this book to be a bridge from the present 

firmware development model to the future and make sure the readers 

are well equipped with such knowledge that makes them ready for such a 

migration in future.

In other words, we wrote this book for people who want to learn 

about the future of firmware and prepare themselves with all required 

knowledge to excel. This book covers the essential knowledge that is 

required for a firmware developer, debug engineer, testing or validation 

engineer or even someone is working in a project as a DevOps engineer. 

Chapters 2 to 4 cover the specialized systematic knowledge needed for 

PrefaCe
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firmware development. Chapter 6 illustrates the concepts that are relevant 

for future development and can be learned by analyzing end-user use-

case scenarios. The concepts presented as part of this book are based on 

practical results, and the data illustrates why we believe those ideas will 

definitely merge into the product line in the future. We present a large 

number of examples that are aligned to system firmware development as 

many developers have visibility into this area compared to other firmware 

developments.

PrefaCe
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“Learning never exhausts the mind.”

—Leonardo da Vinci

The era that we are currently living in is famous for its continuous 

evolution; things around us are changing quite rapidly, legacy 

technologies are fading over time, and modern development ideas are 

mature enough to fill the void. The only constant in this volatile world is 

continuous learning. Albert Einstein said it best: “Once you stop learning, 

you start dying.”

A study suggests that people who are actively involved in continuous 

learning and have passion toward learning something new are able to 

connect well with an industry that is migrating toward newer technology, 

compared with other who rely on a narrow set of skills and experiences. 

There are lots of materials available on the Internet that motivate people to 

start engaging in development activity without even paying attention to the 

details of the technology such as its architecture, intrinsic operations, and 

interfaces that are used while communicating with other components to 

define a complete system.

Focusing on depth while learning will help to expand the scope of 

learning. For example, understanding system firmware in depth will help 

to understand the working operational model of an operating system 

due to its interface with underlying firmware, realize different hardware 

components while initializing, and recognize the value of the compiler, 

toolchains, and so many other components that are an extrinsic part of 

firmware being operational. It also helps to level up and look beyond 

the traditional boundary of existing offerings to discover something that 
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is more applicable for future needs. The value of in-depth knowledge is 

something that can easily be described as the deeper the roots, the greater 

the fruits. Like a gardener who nurtures a sapling and creates a tree for 

tomorrow, we have prepared the soil for harvesting using our previous 

book, System Firmware: An Essential Guide to Open Source and Embedded 

Solutions. The purpose of Firmware Development: A Guide to Specialized 

Systemic Knowledge is to cultivate on that foundation and anchor the 

developers’ journey into the firmware world.

Firmware Development is not intended to teach any particular 

programming language (except for the appendix that highlights the 

evolution of system programming languages) or method that can be used 

for developing firmware. Rather, this book explains the operational model 

of different technologies or frameworks being used for developing various 

types of firmware. Firmware is an essential entity that is used to bring all 

forms of hardware to life. Additionally, the book will prepare its readers to 

be ready for a future of possible architecture migration and understand the 

need to adopt a different framework or technology over the conventional 

approach that best meets the product’s need.

Over time, device manufacturers and consumers have started realizing 

the power of developing a transparent product development ecosystem 

where components that are combined to create a computing system are 

visible enough. It helps to remove the dependency from a limited group 

of people and make the scope wider where things can be taken care of 

differently. For example, over the years firmware layers are preferred for 

making awful workarounds due to limited or even no visibility into the 

operating system and its driver operational model. This might induce 

unwanted latency while the device transitions between different system 

states. Traditionally, computing devices were developed with proprietary 

firmware, which limits innovation and restricts the essential knowledge 

of the system. Firmware is the closest possible entity to the hardware, and 

the best way to learn system knowledge is by exploring the hardware and 
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firmware communications. Unless the firmware development is open, it 

will always remain under the influence of a specific group that decides 

what goes into certain hardware.

Let’s take a real-world example of Baseboard Management Controller 

(BMC) firmware development. For several years, the BMC firmware 

was developed using proprietary source code, and its innovation was 

also limited until 2014 when Facebook created a prototype open source 

BMC stack named OpenBMC. In 2018, OpenBMC became a Linux 

Foundation project. The introduction of OpenBMC on the server platform 

also influenced the industry and gave birth to u-bmc (u-bmc is a open 

source firmware for baseboard management controllers, or BMCs) 

and RunBMC (RunBMC is a smarter, simpler, open approach to out-

of- band management for servers). The key highlight that we would like 

to emphasize here is the evolving nature of firmware. You should start 

preparing yourself to gain the required knowledge that makes you ready 

for any such architecture migration.

Firmware Development is based on two firmware engineers’ real- 

world experiences, and the book captures the specialized systemic 

knowledge that typically a firmware engineer needs to possess after the 

base foundation is created. In a software project development cycle, 

development is one of the key pillars that is being highlighted, but there 

are other essential components that remain cloaked, and without them, 

the project development might not be productive. A software project cost 

evaluation model suggests that the cost of debugging, integration, testing, 

and verification is estimated at 50 to 75 percent of the total budget. This 

book includes those components as part of specific chapters and stresses 

the value of having specialized knowledge.

Additionally, this book simplifies the need to enforce firmware security 

as firmware is the most privileged entity of the system stack. Modern 

systems on chip (SoC) are getting complicated, and typically a computing 

system has multiple firmware to manage during boot, implements a 

robust upgrade methodology to ensure the system never goes out of 
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maintenance, and has the provision to comprehend any bug fixes through 

firmware updates. Hence, it’s important to build the security principles for 

the platform, and it’s essential that all firmware ingredients adhere to the 

principles without failure to define a sustainable security solution.

This introduction gives an overview of the firmware development 

model and expectations for future firmware and also describes what 

readers can expect in the remainder of this book.

 Identifying a Better Firmware 
Development Model
Firmware development is considered essential knowledge that can bring 

hardware to life. While the user presses the power button or connects the 

power supply to the computing system (be it consumer, industrial, and/

or data centers), an autonomous entity called firmware starts its execution 

and performs the essential hardware initialization prior to handing 

over power to the higher-level software like the operating system. In a 

computing system, there are various types of firmware that exist; one can 

assume that almost each independent hardware block that belongs to the 

computing system contains firmware. Depending on the complexity of 

the operation that the hardware block performs, it contains a Boot ROM 

(which is typically nonupdatable in-field) and/or a updatable firmware if 

the hardware block has its dedicated nonvolatile storage or shares it with 

the other components on the motherboard. Being the device manufacturer 

or system integrator or owner of the device, it’s the fundamental right to 

know what is running on the device. It’s also a prevailing reason to have 

visibility into firmware development as firmware is running at the utmost 

privileged layer, and several vulnerabilities have been reported in past 

years due to compromised firmware.
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The minimal expectation for future firmware is to have visibility into its 

operational model and empower firmware wizards to build and boot their 

target hardware with it. The objective is to be able to configure all possible 

hardware knobs using the open source system firmware. It’s important to 

ensure that in case the silicon firmware block is not instantly available in 

the open source to meet the primary objective but still the open source 

firmware development effort is unblocked by adhering to a standard 

specification that defines the interfacing requirement between various 

firmwares and documents its basic operational model.

The future of firmware development can be predicted as it might not 

only be limited to the low-level firmware programming language and its 

technique rather it might start migrating towards the advanced or  

high-level programming languages. Also, future firmware may have a 

smaller firmware boundary and extended trusted boundary beyond 

firmware to use the powerful kernel as a replacement of the advanced 

firmware stage that maximizes the code reusability across platform 

components (i.e., low-level firmware and high-level software), running 

more validated code on top of the hardware with confidence. For example, 

the OpenBMC image contains a bootloader (u-boot), a Linux kernel, 

open source and board- specific packages. oreboot is another open source 

firmware, written in Rust, that has support for booting an ASpeed AST2500 

ARM BMC. Many internet devices have adapted to open source device 

firmware as well. For example, the TP-Link and Xiaomi router firmwares 

are derived from OpenWrt, an open source firewall/router distribution 

based on the Linux kernel.

 Motivation for This Book
This book provides the specialized knowledge that an engineer needs 

to have while working on a low-level hardware project. It’s presumed 

that a person working on a overall system development or on firmware 
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development, validation, and/or integration should equipped with 

essential knowledge of the computer architecture; several hardware blocks 

like memory, I/Os, bus, etc.; and specific firmware interface knowledge 

such as ACPI, SMBUS, Device Tree, etc., to be able to communicate with 

the operating system. System Firmware: An Essential Guide to Open Source 

and Embedded Solutions, from the same authors, creates that foundation. 

The current book in your hands covers the specific knowledge that 

engineers might encounter while working on day-to-day tasks such as the 

following:

Firmware development: Having architecture 

knowledge is essential, but outcomes from that 

knowledge are also expected. An engineer needs 

to understand what it takes to create the firmware 

that can boot on the target hardware. Hence, 

understanding different technologies is important.

Build tools: Writing a firmware module wouldn’t 

be enough to solve a problem unless developers 

understand what it takes to convert this piece of 

source code into executables that runs on the device 

while it’s powering on.

Configuration: Having a solid testing and 

verification infrastructure is crucial for a product to 

meet its quality milestones and claim to be a best- 

in- class product that has negligible user-visible 

defects. In hardware-driven project development, 

a lot depends on validation to ensure all possible 

hardware interfaces are operational to meet the 

wider user requirements. Hence, every firmware 

is expected to provide a possible configuration 
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option during product development that allows 

configuration of all possible hardware interfaces.

Source control management (SCM): In an 

organization that has more than one developer 

working on the project or that wants to maintain the 

source code in a more structured way, one needs to 

understand the value of source code management. 

As the majority of future firmware development 

models are expected to adapt the open source 

model, it’s kind of inevitable to avoid the need to 

have SCM for firmware development.

Developing the open source mindset: In the future, 

the majority of firmware product development will 

be breaking its internal-only development model 

and starting to adapt to the culture of upstreaming 

(a term typically used in open source development, 

which suggests that downstream forks of the project 

are also contributing into the source). Based on 

our personal experience, this requires a change in 

mindset. Working on open source projects demands 

persistence toward solving a problem, which is 

entirely different than working on proprietary source 

code where no one has visibility into what the 

developers check in at the end of the day. Statistical 

data shows that people working or learning in open 

environments have a wider and more diverse social 

circle. Open source firmware development helps to 

network with industry leaders (by attending various 

conferences throughout the year or listening them 

weekly basis during open forum that discuss the 

scope for firmware improvement) who are providing 
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the vision as technologies are evolving rapidly. 

This book highlights the best-known practices that 

one should have while working on an open source 

project.

Knowledge of debugging: According to a CVP survey, 

a programmer typically spends 49.9 percent of 

their time debugging. Debugging is an art that 

can come only with an in-depth understanding 

of the domain and technology. Most of the time, 

engineers are short of ideas about what it takes to 

start debugging a defect. A skillful debug engineer 

always keeps their arsenal full of key tools (which 

can be hardware and/or software depending on 

the nature of the defaults). Also, there is no rule of 

thumb for debugging, and the debug methodology 

is also widely varied among different architectures. 

Chapter 4 covers the different debug techniques 

that can be used while debugging system firmware 

defects, describes the architecture of different 

hardware-based debugging tools applicable across 

architectures, and illustrates certain real-world 

scenarios where developers can apply those tools.

The purpose of the book is to give engineers the more specialized 

knowledge that is required to build their own system firmware for target 

embedded systems. As specified, the book includes knowledge that 

is specific for firmware development like understanding the firmware 

build procedure that involves compilers and toolchain knowledge, 

understanding the need for product-specific utilities, integrating the 

several pieces of the firmware and allowing configuration, updating the 

firmware, creating a development infrastructure for allowing multiparty 

collaboration in firmware development, and debugging advanced system 
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firmware. This book covers such advanced knowledge to ensure readers 

assume better control while developing their own firmware and interacting 

with native hardware while debugging. Additionally, it provides guidance 

for developing secured system firmware for the target hardware.

After reading this book, you will be ready for the future with this 

specialized systemic knowledge as well as understand key principles for 

developing future firmware using newer technology.

 Who Is This Book For?
This book is related to embedded system and firmware programming 

models. Readers are expected to be comfortable with low-level 

programming languages such as assembly and C. A few topics require 

specific knowledge on UEFI technology and an understanding of modern 

programming languages like Rust and Go.

As this book will focus on advanced firmware development, the 

expectation from its audience is to have an essential understanding of 

system firmware, its architecture, and basic hardware. If you don’t already 

understand these topics, read System Firmware: An Essential Guide to 

Open Source and Embedded Solutions from the same authors.

Firmware development is a unique art, and the wider the audience, the 

better the scope of evolution in technology; hence, the target audience of 

this book ranges from students interested in STEM topics to recent college 

graduates working on developing skill sets as per the market needs to 

embedded firmware/software engineers wanting to improve their skill sets 

to be ready for any architecture migrations in the future.

Also, it would be benefitting for engineers currently working in open 

source firmware development.
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The book will do the following:

• Describe different types of firmware that a computing 

system is typically equipped with, such as system 

firmware (running on the host CPU), device firmware 

(firmware running on peripherals attached with 

motherboard), and manageability firmware (the 

firmware part of special hardware that allows out-of- 

band access into the computing system).

• Explain the current working model of the different 

firmware types and analyze the scalable firmware 

development model in the future that provides the 

required visibility into the most privileged stack 

running on computing systems.

• Describe the infrastructure required for creating 

your own firmware for targeted hardware. This book 

explains the build procedure of different technologies 

being used while creating system firmware.

• Highlight the importance of proper infrastructure for 

seamless firmware development where multiple parties 

can collaborate.

• Debugging is a fine art. The expectation from this book 

is that you will be able to understand the different 

debug tools used across architectures and learn the 

different debugging methodologies used during various 

phases of firmware product development. It will help 

engineers to develop their skills to easily distinguish a 

defect between various components of a system and 

prepare a debug environment for the root cause of the 

defects.

inTroduCTion



xxxi

• Understand the definition of platform security and 

how much of it is actually dependent on underlying 

firmware. Firmware is the initial code block that runs 

immediately after power-on; hence, defining the trust 

in firmware is the minimal requirement for calling a 

system secure.

• Set up key expectations for future firmware, including 

thinner firmware footprints and faster execution 

time, easier configuration, and increased transparent 

security.

 Overview of the Book
In general, this book assumes readers are reading the chapters in 

sequence, where each chapter builds on a knowledge block gained from 

earlier chapters. As the book progresses, we will look at the application of 

that knowledge.

Chapters can be divided into two categories: concepts and application. 

In the concept chapters, readers will learn about various aspects such 

as understanding the different types of firmware, using various types of 

tools required for firmware projects, building project infrastructure, and 

realizing the need for firmware security to ensure a secured system. In the 

application chapters, we’ll build a few applications using the knowledge 

learned from the concept chapters.

Spotlight on Future Firmware: Chapter 1 covers a subset of the total 

number of firmwares that exist on a typical computing system. (System 

Firmware: An Essential Guide to Open Source and Embedded Solutions 

provides the specific details on the boot firmware and payload.) Chapter 1 

is like a spotlight on the other firmwares such as device and manageability 
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firmware along with system firmware. It explains the different technologies 

being used in modern firmware development and highlights that several 

firmware development models are transitioning from closed source to 

open source in the future.

Tools: Chapter 2 focuses on the details on various types of tools that 

a user should be equipped with while creating their own firmware. It 

includes the following:

• Build tool: Developing source code and converting it 

into the final binary that can be flashed on the SPINOR 

involves several intermediated steps and involves 

various tools.

• Configuration tool: The need for configuration tools 

becomes inevitable when firmware development 

follows the hybrid work model as explained in  

Chapter 1. The need for configuration tools increases 

when the ability to modify the source code is limited 

during product development.

• Flashing/update tool: There might be several instances 

where product integrators or users would like to update 

the preflash boot firmware without the hardware-based 

utilities.

Infrastructure for Building System Firmware: Chapter 3 provides an 

infrastructure overview required for open source firmware development. 

In this process of firmware migration, knowing the correct infrastructure 

and setting it up is required for efficient communication during the 

firmware development process. Additionally, defining the correct 

standards for open source firmware development is important to support 

seamless architecture migration without any additional cost (in terms of 

effort and time).

inTroduCTion



xxxiii

System Firmware Debugging: Chapter 4 explains the different 

debugging methodologies used in boot firmware such as legacy methods, 

advanced software-based debugging, hardware-based debugging, source 

code debugging, etc.

Security at Its Core: Chapter 5 covers that firmware is closed to 

hardware and explains how abstracting the operating system from 

the underlying hardware provides another reason to ensure the 

communication channel is secure. This chapter focuses on designing the 

boot firmware, keeping security in mind.

The Future of System Firmware: Chapter 6 shares knowledge for 

creating firmware based on the market need. This chapter will discuss a 

few futuristic proposals and their implementation details to reduce the 

firmware boundary by adopting these principles: performance, simplicity, 

security, and open source.

The appendixes support the claim that firmware development in the 

future is looking into the possibility of high-level system programming 

language adaptation.

The glossary and index are applicable for connecting back to the 

main topics.
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CHAPTER 1

Spotlight on Future 
Firmware

“In real open source, you have the right to control your 
own destiny.”

—Linus Torvalds

When purchasing a computing device, users are concerned with the 

hardware configuration of the device and whether it has the latest versions 

of the software and applications. Most computer and consumer electronics 

device users don’t realize that there are several layers of programs that run 

between the user pressing the power button of the device and when the 

operating system starts running. These programs are called firmware.

Firmware is responsible for bringing the device into its operational 

state and remains active while the OS is running, even when the device 

is in low-power mode. A computing system, irrespective of consumer, 

server, or IoT type, contains many different types of firmware. Firmware 

that runs on the host CPU is known as system firmware, and firmware that 

is specific to devices is called device firmware. In addition, there are other 

microcontrollers being used to manage the device, and firmware running 

on those controllers is called manageability firmware. The firmware code 

that runs on these devices has certain responsibilities prior to handing 

over control to the higher-level system software. For example, the system 
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firmware upon platform reset is the main interface for initializing CPUs, 

configuring the physical memory, communicating with peripheral devices, 

and finally picking the OS loader to boot an operating system. Every 

computing device is equipped with peripherals such as input and output 

devices, block devices, and connectivity devices. While system firmware is 

focusing on the host CPU and its associated interface initialization, device 

firmware has started its execution either by executing a self-start program 

or by waiting for an initiation command from the system firmware to 

become operational. Figure 1-1 shows an overview of typical computing 

system (consumer or server) firmware.

Figure 1-1. Typical computing system firmware inventory

Recent research from the LinuxBoot project on the server platform 

claims that the underlying firmware is at least 2.5x times bigger than 

the kernel. Additionally, these firmware components are capable. For 

example, they support the entire network stack including the physical 

layer, data link layer, networking layer, and transportation layer; hence, 

firmware is complex as well. The situation becomes worse when the 
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majority of the firmware is proprietary and remains unaudited. Along 

with end users, tech companies and cloud service providers (CSPs) may 

be at risk because firmware that is compromised is capable of doing a lot 

of harm that potentially remains unnoticed by users due to its privileged 

operational level. For example, exploits in Base Management Controller 

(BMC) firmware may create a backdoor entry into the server, so even if a 

server is reprovisioned, the attacker could still have access into the server. 

Besides these security concerns, there are substantial concerns regarding 

performance and flexibility with closed source firmware.

This chapter will provide an overview of the future of the firmware 

industry, which is committed to overcoming such limitations by 

migrating to open source firmware. Open source firmware can bring 

trust to computing by ensuring more visibility into the source code that 

is running at the Ring 0 privilege level while the system is booting. The 

firmware discussed in this chapter is not a complete list of possible 

firmware available on a computing systems, rather just a spotlight on 

future firmware so you understand how different types of firmware could 

shape the future. Future firmware will make device owners aware of what 

is running on their hardware, provide more flexibility, and make users feel 

more in control of the system than ever.

 Migrating to Open Source Firmware
Firmware is the most critical piece of software that runs on the platform 

hardware after boot, and it has direct access to hardware registers and 

system memory. Firmware is responsible for bringing the system into a 

state where higher-level software can take control of the system and the 

end user can make use of the peripheral devices. Prior to that, the user 

doesn’t have any control of the system while the system is booting. A 

misconfiguration in firmware might make the system unusable or create 

security loopholes. Hence, it’s important to know what is running at the 
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lowest level of the platform hardware. Figure 1-2 shows the privilege level 

of software programs running on a computing system. Typically, computer 

users are more familiar with the system protection rings between Ring 0 

and Ring 3, where Ring 0 is considered as the most privileged level where 

the kernel is operating and Ring 3 is considered as the least privileged for 

running applications or programs. Interestingly, underneath the kernel’s 

Ring 0 layer, there is firmware space running, which provides a more 

privileged mode of operations compared to the kernel. In this chapter, 

these layers running beneath Ring 0 are referred to as Ring -1 to Ring -3.

Figure 1-2. System protection rings

Let’s take a look into these “minus” rings in more detail.
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 Ring -1: System Firmware
System firmware is a piece of code that resides inside the system boot 

device, i.e., SPI Flash in most of the embedded systems, and is fetched by 

the host CPU upon release from reset. Depending on the underlying SoC 

architecture, there might be higher-privileged firmware that initiates the 

CPU reset (refer to the book System Firmware: An Essential Guide to Open 

Source and Embedded Solutions for more details).

Operations performed by system firmware are typically known as 

booting, a process that involves initializing the CPU and the chipsets part 

of systems on chip (SoCs), enabling the physical memory (dynamic RAM, 

or DRAM) interface, and preparing the block devices or network devices 

to finally boot to an operating system. During this booting process, the 

firmware drivers can have access to direct hardware registers, memory, 

and I/O resources without any restrictions. Typically, services managed by 

system firmware are of two types: boot services, used for firmware drivers’ 

internal communication and vanished upon system firmware being 

booted to the OS; and runtime services, which provide access to system 

firmware resources to communicate with the underlying hardware. System 

firmware runtime services are still available after control has transferred to 

the OS, although there are ways to track this kind of call coming from the 

OS layer to the lower-level firmware layer at runtime.

System firmware belonging to the SPI Flash updatable region qualifies 

for in-field firmware update, and also supports firmware rollback 

protection to overcome vulnerabilities.

 Ring -2: System Management Mode
System Management Mode (SMM) is the highest privileged mode of 

operations on x26-based platforms. There are two widely used ways to 

allow the system to enter into SMM:
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• Hardware-based method: This triggers a system 

management interrupt (SMI), a dedicated port 0xb2 

with the unique SMI vector number.

• Software-based method: This uses a general-purpose 

interrupt through the Advanced Programmable 

Interrupt Controller (APIC).

During initialization of the system firmware, a code block (program) 

can get registered with an SMI vector, which will get executed while 

entering into SMM. All other processors on the system are suspended, and 

the processor states are saved. The program that is getting executed when 

in SMM has access to the entire system, i.e., processor, memory, and all 

peripherals. Upon exiting from SMM, the processor state is restored and 

resumes its operations as if no interruption had occurred. Other higher-

level software doesn’t have visibility about this mode of operation.

SMM exploits are common attacks on computer systems, where 

hackers use SMI to elevate the privilege level, access the SPI control 

registers to disable the SPI write protection, and finally write BIOS rootkits 

into the SPI Flash.

The major concern with SMM is that it’s completely undetectable, so 

one doesn’t know what kind of operation is running in SMM.

 Ring -3: Manageability Firmware
Ring -3 firmware consists of the separate microcontrollers running its 

firmware and later booted to a real- time operating system (RTOS). This 

firmware always remains on and is capable of accessing all the hardware 

resources; it’s meant to perform the manageability operations without 

which one might need to access these devices physically. For example, 

it allows the remote administration of the enterprise laptops and servers 

by IT admins, such as powering on or off the device, reprovisioning the 

hardware by installing the operating system, taking the serial log to analyze 
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the failure, emulating the special keys to trigger recovery, performing 

active thermal management like controlling the system fans, and handling 

the critical hardware device failure like a bad charger, failure of storage 

device, etc.

Although this firmware has access to system resources (access to the 

host CPU, unlimited access to the host system memory and peripherals) 

of the host CPU (based on how it is being interfaced with the host CPU), 

the operations performed by these processors are “invisible” to the host 

processor. The code that is running on these processors is not publicly 

available. Moreover, these codes are provided and maintained by the 

silicon vendors; hence, they are assumed to be trusted without verifying 

through any additional security layer like a verified boot or secure boot.

The fact to consider here is that all these software codes are developed 

by humans and reviewed by other sets of humans. It’s possible to have 

some bugs exist irrespective of which layer of ring it’s getting executed in, 

and the concern is that the more privileged layer that gets executed, the 

more opportunity there is for hackers to exploit the system.

As per the National Vulnerability Database (NVD), there are several 

vulnerabilities being reported or detected by security researchers on 

production systems every year. Among those security defects there are 

many that exist within the “minus” rings. For example, CVE-2017-3197, 

CLVA-2016-12-001, CLVA-2016-12-002, CVE-2017-3192, CVE-2015-3192, 

CVE-2012-4251, etc., are vulnerabilities reported in firmware from 

the NVD.

Most of the firmware being discussed was developed using closed 

source, which means the documentation and code source to understand 

what’s really running on a machine is not publicly available. When a 

firmware update is available, you may be worried about clicking the accept 

button because you don’t have any clue whether this update is supposed 

to run on your machine. The user has a right to know what’s really running 

on their device. The problem with the current firmware development 

model is not the security; a study done on 17 open source and closed 
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source software showed that the number of vulnerabilities existing in a 

piece of software is not affected by the source availability model that it 

uses. The problem is lack of transparency.

Transparency is what is missing in closed source firmware if we park 

the argument about the code quality due to internal versus external code 

review. All these arguments will point back to the need to have visibility 

into what is really running on the device that is being used. Having the 

source code available to the public might help to get rid of the problem of 

running several “minus” rings.

Running the most vulnerable code as part of the highest privileged 

level makes the entire system vulnerable; by contrast, running that code 

as part of a lesser privileged level helps to meet the platform initialization 

requirement as well as mitigates the security concern. It might also help to 

reduce the attack surface.

Additionally, performance and flexibility are other concerns that can 

be improved with transparency. For example, typically closed source 

firmware development focuses on short-term problems such as fixing the 

bugs with code development without being bothered about redundancy 

if any. A case study presented at the Open Source Firmware Conference 

2019 claimed that a system is still functional and meets the booting 

criteria even after 214 out of 424 firmware drivers and associated libraries 

were removed, which is about a 50 percent reduction. Having more 

maintainers of the code helps to create a better code sharing model that 

overcomes such redundancy and results in instant boot. Finally, coming 

to the security concerns, having a transparent system is more secure 

than a supposed secure system that hides those potential bugs in closed 

firmware.

This is a summary of the problems with the current firmware:

• Firmware is the most critical piece of code running on 

the bare hardware with a privileged level that might 

allure attackers.
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• A compromised firmware is not only dangerous for the 

present hardware but all systems that are attached to it, 

even over a network.

• Lower-level firmware operations are not visible to 

upper-level system software; hence, attacks remain 

unnoticed even if the operating system and drivers are 

freshly installed.

• Modern firmware and its development models are less 

transparent, which leads to multiple “minus” rings.

• Having a transparency firmware development model 

helps to restore trust in firmware as device owners 

are aware of what is running on the hardware. In 

addition, better design helps to reduce the “minus” 

rings, represents less vulnerability, and provides better 

maintenance with improved code size and higher 

performance.

Open source firmware (OSF) is the solution to overcome all of 

these problems. The OSF project performs a bare-minimum platform 

initialization and provides flexibility to choose the correct OS loader based 

on the targeted operating system. Hence, it brings efficiency, flexibility, 

and improved performance. Allowing more eyes to review the code while 

firmware is getting developed using an open source model provides 

a better chance to identify the feature detects, find security flaws, and 

improve the system security state by accommodating the community 

feedback. For example, all cryptographic algorithms are available in 

GitHub publicly. Finally, to accommodate the code quality question, a 

study conducted by Coverity Inc. finds open source code to be of better 

quality. All these rationales are adequate to conclude why migrating 

to OSF is inevitable. Future firmware creators are definitely looking 

into an opportunity to collaborate more using open source firmware 

development models.
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This chapter will emphasize the future firmware development models 

of different firmware types such as system firmware, device firmware, and 

manageability firmware using open source firmware.

 Open Source System Firmware  
Development
Most modern system firmware is built with proprietary firmware where the 

producer of the source code has restricted the code access; hence, it allows 

private modification only, internal code reviews, and the generation of new 

firmware images for updates. This process might not work with a future 

firmware development strategy where proprietary firmware is unreliable, 

or the functionality is limited in cases where device manufacturers relied 

on a group of firmware engineers who know only what is running on 

the device and therefore are capable of implementing only the required 

features. Due to the heavy maintenance demands of closed source 

firmware, often device manufacturers defer regular firmware updates 

even for critical fixes. Typically, OEMs are committed to providing system 

firmware updates two times during the entire life of the product, once 

at the launch and another six months later in response to an operating 

system update. System firmware development with an open source model 

in the future would provide more flexibility to users to ensure that the 

device always has the latest configuration. For that to happen, future 

system firmware must adhere to the open source firmware development 

principle. The open source firmware model is built upon the principle of 

having universal access to source code with an open source or free license 

that encourages the community to collaborate in the project development 

process.
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This book provides the system architecture of several open source 

system firmware types including the bootloader and payload. Most open 

source bootloaders have strict resistance about using any closed source 

firmware binary such as binary large objects (BLOBs) along with open 

source firmware. Typically, any undocumented blobs are dangerous for 

system integration as they could be rootkits and might leave the system 

in a compromised state. But, the industry recognizes that in order to 

work on the latest processors and chipsets from the silicon vendors, the 

crucial piece of the information is the silicon initialization sequence. In 

the majority of cases, this is considered as restricted information prior 

to product launch due to innovation and business reasons and may be 

available under only certain legal agreements (like NDAs). Hence, to 

unblock the open source product development using latest SoCs, silicon 

vendors have come up with a proposal for a binary distribution. Under 

this binary distribution model, the essential silicon initialization code is 

available as a binary, which eventually unblocks platform initialization 

using open source bootloaders and at the same time abstracts the 

complexities of the SoC programming and exposes a limited set of 

interfaces to allow the initialization of SoC components. This model is 

referred to in this book as the hybrid work model.

This section will highlight the future system firmware journey using 

following operational models:

• Hybrid system firmware model: The system firmware 

running on the host CPU might have at least one closed 

source binary as a blob integrated as part of the final 

ROM. Examples: coreboot, SBL on x26 platforms.

• Open source system firmware model: The system 

firmware code is free from running any closed source 

code and has all the native firmware drivers for silicon 

initialization. Example: coreboot on RISC-V platforms.
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 Hybrid System Firmware Model
As defined earlier, the hybrid system firmware model relies on a silicon-

provided binary for processor and chipset initialization; hence, it needs 

the following components as part of the underlying system firmware:

• Bootloader: A boot firmware is responsible for generic 

platform initialization such as bus enumeration, device 

discoveries, and creating tables for industry-standard 

specifications like ACPI, SMBIOS, etc., and performing 

calls into silicon-provided APIs to allow silicon 

initialization.

• Silicon reference code binary: One or multiple binaries 

are responsible for performing the silicon initialization 

based on their execution order. On x86-platforms, 

Firmware Support Package (FSP) is the specification 

being used to let silicon initialization code perform 

the chipset and processor initialization. It allows 

dividing the monolithic blob into multiple sub-

blocks so that it can get loaded into system memory 

as per the associated bootloader phase and provides 

multiple APIs to let the bootloader configure the input 

parameters. Typically, this mode of FSP operation 

is known as API mode. Unlike other blobs, the FSP 

has provided the documentation, which includes 

the specification and expectation from each API 

and platform integration guide. This documentation 

clearly calls out the expectations from the underlying 

bootloader, such as the bootloader stack requirement, 

heap size, meaning for each input parameter to 

configure FSP, etc.
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Facts intel FSp Specification v2.1 introduces an optional FSp boot 
mode named Dispatch mode to increase the FSp adaptation toward 
pi spec bootloaders.

• Payload: An OS loader or payload firmware can be 

integrated as part of the bootloader or can be chosen 

separately, which provides the additional OS boot logic.

The book System Firmware: An Essential Guide to Open Source and 

Embedded Solutions provides the detailed system architecture of the 

bootloader and payload and defines the working principle with hybrid 

firmware as FSP. This section will focus on defining the work relationship 

between open source boot firmware with FSP.

• coreboot using FSP for booting the IA-Chrome platform

• EDKII Minimum Platform Firmware for Intel Platforms

 coreboot Using Firmware Support Package

Firmware Support Package (FSP) provides key programming information 

for initializing the latest chipsets and processor and can be easily 

integrated with any standard bootloader. In essence, coreboot consumes 

FSP as a binary package that provides easy enabling of the latest chipsets, 

reduces time-to-market (TTM), and is economical to build as well.

FSP Integration

The FSP binary follows the UEFI Platform Initialization Firmware Volume 

Specification format. Hence, each firmware volume (FV) as part of FSP 

contains a phase initialization code. Typically, FSP is defined as a single 

firmware device (FD) binary, but because it contains several FVs and 

each FV represents a different initialization phase and runs at different 
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noncontiguous addresses, a monolithic binary wouldn’t work here. Since 

the FSP 2.0 specification, the FSP binary can be split into three blobs as 

FSP-T, called FSP for Temporary RAM Initialization; FSP-M, called FSP for 

Memory Initialization; and FSP-S, called for Silicon Initialization. Here are 

some required steps for the FSP integration:

• Configuration: The FSP provides configuration 

parameters that can be customized based on target 

hardware and/or operating system requirements by the 

bootloader. These are inputs for FSP to execute silicon 

initialization.

• eXecute-in-place and relocation: The FSP is not position 

independent code (PIC), and each FSP component 

has to be rebased if it needs to support the relocation, 

which is different from the preferred base address 

specified during the FSP build. The bootloader has 

support for both these modes where components need 

to be executed at the address where it’s built, called 

eXecute-In-Place (XIP) components and marked  

as --xip, for example, FSP-M binary. Also, position-

independent modules are modules that can be located 

anywhere in physical memory after relocation.

• Interfacing: The bootloader needs to add code to set up 

the execution environment for the FSP, which includes 

calling the FSP with correct sets of parameters as inputs 

and parsing the FSP output to retrieve the necessary 

information returned by the FSP and consumed by the 

bootloader code.
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FSP Interfacing

Since its origin, FSP has tried to provide a flexible interface between the 

bootloader and FSP to have correct sets of parameters required to perform 

the silicon initialization. Although FSP has gone through significant 

specification changes since its first introduction, the basic input/output 

architecture remains unchanged between all these different FSP versions. 

For example, a data structure used to pass a configuration parameter from 

the bootloader to FSP works as input parameters, and hand-off blocks 

(HOBs), a standard mechanism to pass FSP information back to the 

bootloader, work as output parameters. Figure 1-3 shows the evolution of 

FSP interfaces along with its specification.

Figure 1-3. Explaining FSP interfacing with coreboot boot-firmware

coreboot supports FSP Specification version 2.x (the latest as of this 

writing is 2.2).
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FSP Configuration Data

Each FSP module contains a configuration data structure called 

the updatable product data (UPD), which is used by FSP for silicon 

initialization. Typically, UPD contains the default parameters for FSP 

initialization. The bootloader contains a separate UPD data structure 

for each FSP module, which allows the bootloader to override any of 

the default UPD parameters. As part of the FSP integration process, 

the bootloader is also required to keep FSP UPD data structures in the 

bootloader source code along with the corresponding FSP binary. See 

Figure 1-4.

Figure 1-4. UPD data structure as part of coreboot source code

It is recommended that the bootloader copy the whole UPD structure 

from the FSP component to memory, update the parameters, and initialize 

the UPD pointer to the address of the updated UPD structure. The FSP 

API will then use this updated data structure instead of the default 
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configuration region as part of the FSP binary blob while initializing the 

platform. In addition to the generic or architecture-specific data structure, 

each UPD data structure contains platform-specific parameters.

Open Source Challenges with FSP Configuration Data

FSP configuration data structures are crucial for the hybrid system 

firmware development model as it is used to configure the default built-

in UPD configuration data, which might not be applicable for the current 

open source project to ensure the correct silicon initialization. Hence, 

while integrating the FSP blobs with the bootloader, it is recommended to 

ensure it has the same version of UPD structures as part of the bootloader 

source code. FSP is responsible for the entire silicon-related initialization 

process and feature enabling, and only inputs from the bootloader 

are in the UPD data structure. Hence, while calling the FSP APIs like 

TempRamInit(), FspMemoryInit(), and FspSiliconInit(), the bootloader 

needs to pass a pointer that provides the updated data structure. Figure 1-5 

shows the bootloader code structure that ensures the initialization of the 

FSP configuration data for an open source firmware development project.
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Figure 1-5. coreboot code structure to override UPD data structures

OSF development efforts expect the entire project source code is 

available for review and configuration, but due to business reasons 

like innovation and/or competition, the early open sourcing of the FSP 

configuration data structure is not feasible for non-production-release 

qualification (PRQ) products. It poses risk while developing an open 
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source project using the latest SoC prior to PRQ. Consequences of this 

restriction would be incomplete SoC and mainboard source code per 

platform initialization requirements and incomplete feature enabling.

To overcome this problem, a solution is being developed that is open 

source friendly even for open project development using non-PRQ SoC, 

called partial FSP configuration data structure (also known as partial 

header). Here are the working principles of the partial FSP configuration 

data structure generation process:

• This structure consists only of platform UPDs required 

for a specific bootloader to override for the current 

project.

• The rest of the UPDs are renamed as reserved. For any 

project, reserved fields are not meant for bootloader 

overrides.

• Embargoed UPD parameters’ names and descriptions 

are being abstracted.

Partial headers are generated using a Python-based tool. This tool 

will generate the partial headers for those bootloaders that do not need 

the full list of UPD data structures. It takes two arguments for the header 

generation process.

• First argument: This is the path for the complete FSP-

generated UPD data structure. The tool will run on 

this header itself to filter out only the required UPD 

parameters as per the second argument.

• Second argument: This is a file that provides the lists of 

required UPD parameters for bootloader overrides.

This effort will ensure complete source code development on the 

bootloader side along with enabling new features without being bothered 

about the state of the silicon release. Post SoC PRQ, after the embargo is 
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revoked, the complete FSP UPD data structure gets uploaded into FSP on 

GitHub, which replaces all reserved fields of the partial header with the 

proper naming.

coreboot and FSP Communications Using APIs

Since the FSP 2.1 specification, FSP supports two possible boot flows 

based on the implementation of the bootloader and its selection for the 

operational mode of FSP. The majority of the open source bootloaders are 

working with FSP and are using the API mode boot flow. Figure 1-6 shows 

the coreboot boot flow using FSP in API mode.

Figure 1-6. coreboot boot flow using FSP in API mode

Here is the detailed boot flow description:

 1. coreboot owns the reset vector.

 2. coreboot contains the real mode reset vector 

handler code.

 3. Optionally, coreboot can call the FSP-T API 

(TempRamInit()) for temporary memory setup using 

(CAR) and create a stack.
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 4. coreboot fills in the UPD parameters required for 

the FSP-M API, such as FspMemoryInit(), which 

is responsible for memory and early chipset 

initialization.

 5. On exit of the FSP-M API, either coreboot tears 

down CAR using the TempRamExit() API, if the 

bootloader initialized the temporary memory in 

step 3 using the FSP-T API, or coreboot uses the 

native implementation in coreboot.

 6. It fills up the UPD parameters required for 

silicon programming as part of the FSP-S API, 

FspSiliconInit. The bootloader finds FSP-S and 

calls into the API. Afterward, FSP returns from the 

FspSiliconInit() API.

 7. If supported by the FSP, the bootloader enables 

multiphase silicon initialization by setting FSPS_

ARCH_UPD.EnableMultiPhaseSiliconInit to a 

nonzero value.

 8. On exit of FSP-S, coreboot performs PCI 

enumeration and resource allocation.

 9. The bootloader calls the FspMultiPhaseSiInit() 

API with the EnumMultiPhaseGetNumberOfPhases 

parameter to discover the number of silicon 

initialization phases supported by the bootloader.

 10. The bootloader must call the 

FspMultiPhaseSiInit() API with the 

EnumMultiPhaseExecutePhase parameter n 

times, where n is the number of phases returned 

previously. The bootloader may perform board-

specific code in between each phase as needed.
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 11. The number of phases, what is done during each 

phase, and anything the bootloader may need to 

do in between phases, will be described in the 

integration guide.

 12. coreboot continues the remaining device 

initialization. coreboot calls NotifyPhase() at 

the proper stage like AfterPciEnumeration, 

ReadyToBoot, and EndOfFirmware before handing 

control over to the payload.

Facts if FSp returns the reset required status from any api, then 
the bootloader performs the reset as specified by the FSp return 
status return type.

FSP Drivers

The bootloader implements a corresponding version driver to support 

the calling convention of the FSP entry point. Ideally, the purpose of these 

drivers are as follows:

• Find the FSP header to locate the dedicated entry point, 

and verify the UPD region prior to calling.

• Copy the default value from the UPD area into the 

memory to allow the required override of UPD 

parameters based on the target platform using driver-

provided callbacks into the SoC code, for example: 

before calling into memory init or before silicon init.

• Fill out any FSP architecture-specific UPDs that are 

generic like NvsBufferPtr for MRC cache verification.
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• Finally, call the FSP-API entry point with an updated 

UPD structure to silicon initialization.

• On failure, handle any errors returned by FSP-API and 

take action; for example, manage the platform reset 

request to either generic libraries or SoC-specific code.

• On success, retrieve the FSP outputs in the form of 

hand-off blocks that provide platform initialization 

information. For example, FSP would like to notify 

the bootloader about a portion of system memory 

that is being reserved by FSP for its internal use, and 

coreboot will parse the resource descriptor HOBs 

produced by the FSP-M to create a system memory 

map. The bootloader FSP driver must have capabilities 

to consume the information passed through the HOB 

produced by the FSP.

Current coreboot code has drivers for the FSP 1.1 and FSP 2.0 

specifications. The FSP 2.0 specification is not backward compatible but 

updated to support the latest specification as FSP 2.2.

Mitigate Open Source Challenges with FSP Driver

Typically, system firmware development using an open source model has 

expectations that all new silicon feature- related documentation should be 

available to the public to allow the development of the new feature. But in 

reality, with the latest processors and chipsets, the feature programming 

lists are growing and expected to grow even more in future. With more 

capable and complex SoC solutions in the future, there might be some 

cases where certain feature programming might be classified as restricted; 

hence, it is not feasible to implement using an open source bootloader. 

For example, the current coreboot is capable enough to handle the 
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multiprocessor (MP) initialization on the x26-platform using the coreboot 

native cpu and mp drivers. The Boot Strap Processor (BSP) performs the MP 

initialization and typically involves two major operations.

• Bringing-up process: This enables application 

processors (APs) from a reset. It loads the latest 

microcode on all cores and syncs the latest Memory 

Type Range Register (MTRR) snapshot between BSP 

and APs.

• Perform CPU feature programming: Allow vendor-

specific feature programming to run such as to ensure 

higher power and performance efficiency, enable 

overclocking, and support specific technologies like 

Trusted eXecution Technology (TXT), Software Guard 

Extensions, Processor Trace, etc.

Typically, the bringing-up process for APs is part of the open 

source documentation and generic in nature. But, the previously listed 

CPU feature programming lists are expected to grow in the future and 

be considered proprietary implementations. If the system firmware 

implementation with the open source bootloader isn’t able to perform 

these recommended CPU features, programming might resist the latest 

hardware features. To overcome this limitation, the hybrid system 

firmware model needs to have an alternative proposal as part of the 

FSP driver.

Currently, coreboot is doing CPU multiprocessor initialization for the 

IA platform before calling FSP-S using its native driver implementation and 

having all possible information about the processor in terms of maximum 

number of cores, APIC IDs, stack size, etc. The solution offered here is a 

possible extension of coreboot support by implementing additional sets of 

APIs, which are used by FSP to perform CPU feature programming.
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FSP uses the Pre-EFI Initialization (PEI) environment defined in the 

PI Specification and therefore relies on install/locate PPI (PEIM to PEIM 

Interface) to perform certain API calls. The purpose of creating a PPI 

service inside the bootloader is to allow accessing its resources while FSP 

is in operation. This feature is added into the FSP specification 2.1 onward 

where FSP is allowed to make use of external PPIs, published by boot 

firmware and able to execute by FSP, being the context master.

In this case, coreboot publishes a multiprocessor (MP) service PPI, 

EFI_MP_SERVICES_PPI, as per PI Specification Volume 1, section 2.3.9. 

coreboot implements APIs for the EFI_MP_SERVICES_PPI structure with its 

native functions as follows:

APIs as per the  
Specification

coreboot Implementation 
of APIs

APIs Description

PeiGetNumberOf 

Processor

get_cpu_count() to get 

processor count

get the number of 

Cpus.

PeiGetProcessorInfo Fill 

ProcessorInfoBuffer:

- processor iD: apicid

- location: get_cpu_

topology_from_

apicid()

get information on a 

specific Cpu.

PeiStartupAllAps Calling the mp_run_on_

all_aps() function

activate all the 

application processors.

PeiStartupThisAps mp_run_on_aps() 

based on the argument 

logical_cpu_number

activate a specific 

application processor.

(continued)
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APIs as per the  
Specification

coreboot Implementation 
of APIs

APIs Description

PeiSwitchBSP Currently not being 

implemented in coreboot 

due to scoping limitations

Switch the bootstrap 

processor.

PeiEnableDisableAP enable or disable an 

application processor.

PeiWhoAmI Calling to activate the  

cpu_index() function

identify the currently 

executing processor.

PeiStartupAllCpus

only available in EDKII_ 

PEI_MP_SERVICES2_PPI

mp_run_on_aps()  

based on MP_RUN_ON_

ALL_CPUS

run the function on 

all Cpu cores (BSp + 

aps).

Here is code flow between coreboot and FSP while running the 

restricted CPU feature programming:

 1. coreboot selects either CONFIG_MP_SERVICES_

PPI_V1 or CONFIG_MP_SERVICES_PPI_V2 from the 

SoC directory as per the FSP recommendation 

to implement the MP Services PPI for FSP usage. 

coreboot does the multiprocessor initialization 

as part of ramstage early, before calling the FSP-S 

API. All possible APs are out of reset and ready to 

execute the restricted CPU feature programming.

 2. coreboot creates the MP (MultiProcessor) Services 

APIs as per PI Specification Vol 1, section 2.3.9, and 

is assigned into the EFI_MP_SERVICES or EDKII_

PEI_MP_SERVICES2_PPI structure as per the MP 

specification revision.
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 3. FSP-S to install EFI_MP_SERVICES or EDKII_PEI_MP_

SERVICES2_PPI based on the structure provided by 

coreboot as part of the CpuMpPpi UPD. At the later 

stage of FSP-S execution, locate the MP Services PPI 

and run the CPU feature programming on APs.

 4. While FSP-S is executing multiprocessor 

initialization using Open Source EDKII UefiPkg, it 

invokes a coreboot-provided MP Services API and 

runs the “restricted” feature programming on APs.

Figure 1-7 shows the pictorial representation of the boot flow.

Figure 1-7. coreboot-FSP multiprocessor init flow
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This design would allow running SoC vendor-recommended restricted 

CPU feature programming using the FSP module without any limitation 

while working on the latest SoC platform (even on non-PRQ SoC) in the 

hybrid system firmware model. The CPU feature programming inside FSP 

will be more transparent than before as it’s using coreboot interfaces to 

execute those programming features. coreboot will have more control over 

running those programming features as the API optimization is handled by 

coreboot.

This solution is future-proof, because in the future this design of the 

PEIM-PEIM interface (PPI) can be expanded beyond just running the 

restricted CPU feature programming in a coreboot context. Here is a 

list of other opportunities to scale this solution for future hybrid system 

firmware:

• Today on the CrOS platform, the cbmem -c command is 

capable only of redirecting the coreboot serial log into 

the cbmem buffer using the bootloader driver. With this 

approach, the coreboot serial library may be used by 

FSP to populate serial debug logs.

• The same can be used for post code-based debug 

methods as well.

• Rather than implementing a dedicated timer library 

inside FSP, this method can be used by FSP to inject 

any programmable delay using the bootloader-

implemented PPI, which natively uses the bootloader 

timer driver.

To summarize, a hybrid system firmware model in the future provides 

the ease of porting to a new silicon. It allows for bootloaders (coreboot, 

SBL, UEFI MinPlatform, etc.) to have an FSP interfacing infrastructure for 

finding and loading FSP binaries, configuring FSP UPDs as per platform 

need, and finally calling FSP APIs.
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 EDKII Minimum Platform Firmware

Since the introduction of the Unified Extensible Firmware Interface (UEFI) 

firmware in 2004, all Intel architecture platforms have migrated from 

legacy BIOS to UEFI firmware implementations. With a blistering speed, 

UEFI firmware has taken over the entire PC ecosystem to become the  

de-facto standard for system firmware. Historically, platforms that use 

UEFI firmware have been nourished and maintained by a closed group; 

hence, the source used in a platform that uses UEFI firmware remains 

closed source although the specifications are open standards. Details 

about the UEFI architecture and specification are part of System Firmware: 

An Essential Guide to Open Source and Embedded Solutions.

Over the years the platform enabling activity has evolved and demands 

more openness due to firmware security requirements, cloud workloads, 

business decisions for implementing solutions using more open 

standards, etc.

Minimum Platform Architecture

The Minimum Platform Architecture (MPA) provides the design guidelines 

for implementing platform initialization using the open source EDKII 

standard to meet the industry expectations from the UEFI firmware. 

Figure 1-8 shows the high-level firmware stack used in the MPA.
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Figure 1-8. MPA diagram

The MPA firmware stack demonstrates the hybrid-firmware 

development work model where it combines the several closed and open 

source components for platform initialization.

Core
Tianocore is an open source representation of the UEFI. EDKII is 

the modern implementation of UEFI and Platform Initialization (PI) 

specifications. Typically, the EDKII source code consists of standard 

drivers based on the various industry specifications such as PCI, USB, 

TCG, etc.
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Silicon
A closed source binary model was developed and released by silicon 

vendors (example: Intel, AMD, Qualcomm etc.) with an intention to 

abstract the silicon initialization from the bootloader.

Prior to the MPA architecture, the FSP API boot mode was the de facto 

standard for silicon initialization when the bootloader needs to implement 

a 32-bit entry point for calling into the APIs as per the specification. This 

limits the adaptation of SoC vendor-released silicon binaries aka FSP 

toward a bootloader that adheres to the UEFI PI firmware specification. 

Traditionally, the UEFI specification deals with firmware modules 

responsible for platform initialization and dispatched by the dispatcher 

(Pre-EFI Initialization aka PEI and Driver eXecution Environment aka DXE 

core). To solve this adaptation problem in the UEFI firmware platform 

enabling model, a new FSP boot mode has been designed with the FSP 

External Architecture Specification v2.1 known as dispatch mode.

Dispatch Mode

FSP API boot mode requires bootloaders to perform a call into the FSP 

entry points like FSP-M (for Memory Init) and FSP-S (for Silicon Init) for 

initiating the silicon initialization. The dispatch mode is more aligned with 

the UEFI specification where FSP-M and FSP-S are containers that expose 

firmware volumes (FVs) that can be directly used by a UEFI PI–compliant 

bootloader. For example, the UEFI bootloader known as an FSP wrapper 

uses FSP the same way as any other firmware file system partition. The 

PEIM in these FVs are executed as is in the PEI environment with the 

bootloader being the context master. All the FSP entry points introduced 
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as part of API boot mode (i.e., FspMemoryInit(), FspSiliconInit(), and 

NotifyPhase()) are not in use. Figure 1-9 shows the work relationship 

between a UEFI PI bootloader and FSP in dispatch mode.

• The UEFI PI bootloader adhering to the MPA 

is equipped with a PCD database to pass the 

configuration information between bootloaders to 

FSP. This includes hardware interface configuration 

(typically, configured using UPD in API mode) and 

boot stage selection. Refer to the “Min-Tree” section 

to understand the working principle and MPA stage 

approach for incremental platform development.

• PEI Core as part of Silicon Reference code blob aka 

FSP is used to execute the modules residing into the 

firmware volumes (FVs) directly.

• The PEIMs belonging to these FVs are communicating 

with each other using PPI as per the PI specification.

• The hand-off-blocks are being used to pass the 

information gathered in the silicon initialization phase 

with the UEFI PI bootloader.

• The UEFI bootloader doesn’t use NotifyPhase APIs; 

instead, FSP-S contains a DXE driver that implements 

an equivalent implementation using a DXE native 

driver that is getting invoked at NotifyPhase() events.
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Figure 1-9. FSP work model in dispatch mode with UEFI bootloader

UEFI Bootloader and FSP Communications Using Dispatch Mode
The communication interface designed between the UEFI bootloader 

and FSP in dispatch mode is intended to remain as close as possible to 

the standard UEFI boot flow. Unlike API mode, where the communication 

between the bootloader and FSP takes place by passing configuration 

parameters known as UPD to the FSP entry points, in dispatch mode 

the Firmware File Systems (FFSs) that belong to FVs consist of Pre-EFI 

Initialization Modules (PEIMs) and get executed directly in the context 

of the PEI environment provided by the bootloader. This can also be 

referred to as the firmware volume drop-in model. In dispatch mode, 

the PPI database and HOB lists prepared by FSP are shared between the 

bootloader and FSP.

Here is the detailed boot flow description:

 1. The bootloader owns the reset vector and SecMain 

as part of the bootloader getting executed upon the 

platform start executing from the reset vector.
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 2. SecMain is responsible for setting up the initial 

code environment for the bootloader to continue 

execution. Unlike the coreboot workflow with 

FSP in API mode, where coreboot does the 

temporary memory initialization using its native 

implementation on the x86 platform instead calling 

the FSP-T API, dispatch mode tries to maximize 

the usage of FSP and uses FSP-T for initializing 

temporary memory and setting up the stack.

 3. The bootloader provides the boot firmware volume 

(BFV) to the FSP. The PEI core belonging to FSP uses 

the BFV to dispatch the PEIMs and initialize the 

PCD database.

 4. In addition to the bootloader PEI modules, FSP 

dispatches the PEI module part of FSP-M to 

complete the main memory initialization.

 5. The PEI core continues to execute the post-memory 

PEIMs provided by the bootloader. During the 

course of dispatch, the PEIM included within 

FSP-S FV is executed to complete the silicon-

recommended chipset programming.

 6. At the end of the PEI phase, all silicon-

recommended chipset programming is done using 

the closed source FSP, and DXE begins its execution.

 7. The DXE drivers belonging to the FSP-S firmware 

volume are dispatched. These drivers will register 

events to be notified at different points in the boot flow. 

For example, NotifyPhase will perform the callbacks to 

complete the remaining silicon-recommended security 

configurations such as disabling certain hardware 
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interfaces, locking the chipset register, and dropping 

the platform privilege level prior to handing control off 

to the payload or operating system.

 8. The payload phase executes the OS bootloader and 

loads the OS kernel into the memory.

 9. The OS loader signals the events to execute the 

callbacks, registered as part of the DXE drivers to ensure 

the pre- boot environment has secured the platform.

Platform

In the past, UEFI firmware development has used closed source for platform 

initialization, but with MPA, this limitation is diminished by creating a 

platform standard known as the EDKII Minimum Platform Specification. 

This approach allows the platform using UEFI firmware to open source 

and improves customer engagement, brings transparency to product 

development, establishes the trust in the community, and finally establishes 

the ecosystem that encourages the community to contribute toward platform 

implementation. The key innovation in this architecture is the layered 

approach called stages, which are based on the development phase and the 

functionality for specific use cases. Each stage builds upon its previous stage 

with extensibility to meet silicon, platform, or board requirements. The MPA 

tries to split the platform implementation into two parts.

• Generic: This part remains generic in nature by 

providing the required APIs to define the control flow. 

This generic control flow is being implemented inside 

MinPlatformPkg ( Edk2-Platforms/Platform/Intel/

MinPlatformPkg), such that the tasks performed by the 

MinPlatformPkg can be reused by all other platforms 

(belonging to the board package) without any 

additional source modification.
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• Board package: This part focuses on the actual 

hardware initialization source code aka board package. 

Typically, the contents of this package are limited to the 

scope of the platform requirements and the feature sets 

that board users would like to implement. As described 

in Figure 1-8, the board package code is also open 

source and represented as Edk2-Platforms/Platform/

Intel/<xyz>OpenBoardPkg, where xyz represents 

the actual board package name. For example, 

TiogaPass, a board supported by Open Compute 

Project (OCP) based on Intel’s Purley chipset, uses the 

PurleyOpenBoardPkg board package.

Facts a closed source representation of the OpenBoardPkg is 
just BoardPkg, which still directly uses the MinPlatformPkg from 
eDKii platforms.

The board package consists of a standard EDKII package along with 

the following items and must implement the guidelines:

 – A board package may consist of one or more supported 

boards. These boards are sharing the common 

resources from the board package.

 – Board-specific source code must belong to the board 

directory and name after the supported board. For the 

previous example, the board directory for TiogaPass is 

named as BoardTiogaPass.

 – All the board-relevant information is made available to 

the MinPlatformPkg using board-defined APIs.
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To summarize MPA, it consists of a closed source FSP package for 

silicon initialization, and the rest of the source code is potentially open 

source where MinPlatformPkg and a board package are combined together 

to call the platform.

Min-Tree

MPA is built around the principle of a structural development model. This 

structural development model can be referred to as a min-tree, where the 

source code tree is started with a minimalistic approach and enriched 

based on the required functionality getting included over time as the 

platform is getting matured. To make this model structural, the design 

principle relied on dividing the flow, interfaces, communication, etc., into 

a stage-based architecture (refer to “Minimum Platform Stage Approach” 

section).

Figure 1-10 shows the min-tree development model over the product 

life cycle. Typically, in the product development cycle, the early phase is 

always focusing on creating the bare-minimum source code. The target 

is to make sure the early silicon-based simulation or emulation platform 

is able to perform the basic boot to an operating system. To meet this 

goal, the platform development starts by leveraging the source code of 

the previous generation platform (typically referred to as n-1 where n 

is the current generation platform) and existing feature sets. This often 

includes creating the new sets of silicon and platform code on top of the 

prior platform after analyzing the basic differences between the new 

target platform from its prior generation. Hence, at the start of the product 

development cycle, the min-tree just consists of silicon and platform-

related changes that are applicable for the present platform and leverages 

existing features from the prior generation platform.

Chapter 1  Spotlight on Future Firmware



38

Figure 1-10. Min-tree evolution over product timeline

The later product development stages are targeted more toward 

meeting the product milestone releases; hence, it focuses on the code 

completion that includes development of the full feature sets applicable 

for this platform. Next is platform development, which focuses on the 

enablement of the product differentiator features, which is important 

for product scaling. Finally, the platform needs to be committed to 

sustenance, maintenance, and derivative activities. The staged platform 

approach is a more granular representation form of the min-tree where 

based on product requirement, timeline, security, feature sets, etc., 

one can decide the level of the tree to design the minimum platform 

architecture. For example, product-distinguishing features are not part 

of the essential or minimum platform or advanced feature list, and the 

board package is free to exclude such features using boot stage PCD 

(gMinPlatformPkgTokenSpaceGuid.PcdBootStage). This may be used 

to meet a particular use case based on the platform requirement. For 

example, a board may disable all advanced features by setting the board 

Chapter 1  Spotlight on Future Firmware



39

stage PCD value to 4 instead of 6 to improve the boot time. Decrementing 

the additional stages might also be used for SPINOR size reduction as the 

final bootloader executable binary size is expected to get reduced.

Minimum Platform Stage Approach

The MPA staged approach describes the minimal code block and binary 

components required while creating system firmware. The flexible 

architecture allows modifying the FD image to make it applicable for 

the target platform. In this architecture, each stage will have its own 

requirement and functionality based on the specific uses. For example, 

Stage III, Boot to UI, is focused on interfacing with console I/Os and 

other various hardware controllers using the command-line interface. 

Additionally, decrementing a stage might also translate to reducing the 

platform feature set. For example, a Stage III bootloader won’t need to 

publish ACPI tables as this feature is not useful for the platform.

Figure 1-11 describes the stage architecture, including the expectations 

from the stage itself. Each stage is built upon the prior stage with 

extensibility to meet the silicon, platform, or board requirements.

Stage I: Minimal Debug

Stage I (Minimal Debug) is the base foundation block for the later stages 

supported by this architecture to add more complexity by introducing 

advanced functionality.
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Figure 1-11. Minimum platform stage architecture
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Stage I is contained within the SEC and PEI phases; hence, it should 

get packed and uncompressed inside the firmware volume. The minimal 

expectation from this stage is to implement board-specific routines that 

enable the platform debug capability like serial output and/or postcode to 

see the sign of life.

The major responsibilities of Stage I are as follows:

• This is similar to all other bootloaders that come up on 

a memory-restricted environment like x86. Perform 

initialization of temporary memory and set up the code 

environment.

• Perform pre-memory board specific initialization 

(if any).

• Detect the platform by reading the board ID after 

performing the board-specific implementation.

• Perform early GPIO configuration for the serial port 

and other hardware controllers that are supposed to be 

used early in the boot flow.

• Enable the early debug interface, typically, serial 

port initialization over legacy I/O or modern PCH-

based UARTs.

The functional exit criteria of Stage I is when temporary memory is 

available and the debug interface is initialized where the platform has 

written a message to indicate that Stage I is now getting terminated.

Stage II: Memory Functional

Stage II (Memory Functional) is primarily responsible for ensuring the 

code path that executes the memory initialization code for enabling the 

platform permanent memory. This stage extends the operations on top 
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of Stage I and performs the additional/mandatory silicon initializations 

required prior to memory initialization. Because of the memory-restricted 

nature of platform boot, this stage is also packed uncompressed. Stage II 

is more relying on the FSP-M firmware volume in terms of finding the PEI 

core and dispatching the PEIMs.

The following of the major responsibilities of Stage II:

• Perform pre-memory recommended silicon policy 

initialization.

• Execute memory initialization module and ensure the 

basic memory test.

• Switch the program stack from temporary memory to 

permanent memory.

The functional exit criteria of Stage II are that early hardware 

devices like GPIOs are being programmed, main memory is initiated, 

temporary memory is disabled, memory type range registers (MTRRs) 

are programmed with main memory ranges, and the resource description 

HOB is built to pass that initialization information to the bootloader.

Stage III: Boot to UI

The primary objective of Stage III (Boot to UI) is to be able to successfully 

boot to the UEFI Shell with a basic UI enabled. The success criteria of this 

stage is not to demonstrate that every minimum platform architecture 

should be equipped with the UEFI Shell, but rather more focuses on the 

generic DXE driver execution on top of the underlying stages like Stages 

I and II (mainly targeted for silicon and board). The bare-minimal UI 

capability required for Stage III is a serial console.

Stage III is contained with the Driver Execution Environment (DXE) 

and Boot Device Selection (BDS) for booting to the UEFI Shell. The major 

responsibilities of Stage III are as follows:
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• Bring generic UEFI-specific interfaces like DXE Initial 

Program Load (IPL), DXE Core, and dispatch DXE 

modules. This includes installing the DXE architectural 

protocols.

• Perform post-memory silicon-recommended 

initialization.

• Have a provision to access the nonvolatile media 

such as SPINOR using UEFI variables. Additionally, 

capabilities that can be enabled as part (but not only 

limited to this lists) of this phase allow various input 

and output device driver access such as USB, graphics, 

storage, etc.

The functional exit criteria of Stage III is to ensure all generic device 

drivers are not operational and the platform has reached the BDS phase, 

meaning the bootloader is able to implement minimal boot expectations 

for the platform.

Stage IV: Boot to OS

Leveraging on the previous stage, Stage IV (Boot to OS) is to enable a 

minimal boot path to successfully boot to an operating system (OS). The 

minimal boot path is the delta requirement over Stage III that ensures 

booting to an OS.

The minimal boot path for Stage IV includes the following:

• Add minimum ACPI tables required for booting an 

ACPI-compliant operating system. Examples are ACPI 

tables, namely, RSDT (XSDT), FACP, FACS, MADT, 

DSDT, HPET, etc.

• Based on the operating system expectation, it might 

additionally publish DeviceTree to allow the operating 

system to be loaded.
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• Trigger the boot event that further executes the 

callbacks being registered by the FSP-S PEIMs to ensure 

locking down the chipset configuration register and 

dropping the platform privilege prior to launching the 

application outside trusted boundaries.

• This phase will also utilize the runtime services 

being implemented by the UEFI bootloader for 

communication like Timer and nonvolatile region 

access from the OS layer.

After the platform is able to successfully boot to a UEFI-compliant 

OS with a minimal ACPI table being published, it is enough to qualify 

Stage IV to call its termination. Additionally, this stage implements SMM 

support for x86–based platforms where runtime communication can get 

established based on software triggering SMI.

Stage V: Security Enable

The basic objective of Stage V (Security Enable) is to include security 

modules/foundations incrementally over Stage IV. Adhering to the basic/

essential security features is the minimal requirement for the modern 

computing systems. Chapter 5 is intended to highlight the scenarios to 

understand the security threat models and what it means for the platform 

to ensure security all around even in the firmware.

The major responsibilities of Stage V are as follows:

• Ensure that the lower-level chipset-specific security 

recommendation such as lockdown configuration is 

implemented.

• Hardware-based root of trust is being initialized and 

used to ensure that each boot phase is authenticated 

and verified prior to loading into the memory and 

executing it as a chain throughout the boot process.
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• Protect the platform from various memory-related 

attacks if they implement the security advisory well.

• At the end of this phase, it will allow running any 

trusted and authenticated application including the 

operating system.

Stage VI: Advanced Feature Selection

Advanced features are the nonessential block in this min-tree structural 

development approach. All the essential and mandatory features required 

for a platform to reach an operating system are developed using stages I 

to V. The advanced feature selection is focused on developing firmware 

modules based on a few key principles such as modularization, reducing 

interdependencies over other features, etc. It helps these modules to get 

integrated with min-tree as per the user requirements, product use cases, 

and even the later product development cycle.

The design principles behind Stage VI are as follows:

• Platform development models become incremental 

where more essential features are integrated and 

developed at an early phase. Otherwise, the complex 

but generic advanced features can be developed 

without being bottlenecked on the current silicon and 

board but can be readily shared across platforms.

• Advanced feature modules necessarily do not contain 

functionality that is unrelated to the targeted feature.

• Each feature module should be self-content in nature, 

meaning it minimizes the dependencies to the other 

feature.

Chapter 1  Spotlight on Future Firmware



46

• The feature should expose a well-defined software 

interface that allows easy integration and configuration. 

For example, all modules should adhere to EDKII 

configuration options such as PCD to configure the 

feature.

Stage VII: Optimization

In the scope of current architecture, Stage VII (Optimization) is a proposed 

architectural stage reserved for future improvements. The objective of this 

stage is to provide an option for the platform to ensure optimization that 

focuses on the target platform. For example, on a scaling design without 

Thunderbolt ports, there should be a provision using PCD that disables 

dispatching of Thunderbolt drivers (including host, bus, and device). This 

is known as a configurable setting.

Additionally, there could be compilation-time configuration attached 

to the PCD that strips unused components from the defined FV. For 

example, FSP modules are used for API boot mode. It is intended that such 

optimization/tuning can be intercepted in the product even at a later stage 

without impacting the product milestone aka schedules.

These are just examples that demonstrate the architecture freedom 

to improve the platform boot time and SPINOR size reduction at the 

later stage.

To summarize, a hybrid system firmware development using EDKII 

MPA is intended to improve the relationship between open source and 

closed source components. An MPA design brings transparency to 

platform development even with EDKII platform code. The min-tree 

design serves as a basic enablement vehicle for the hardware power- on 

and allows cross-functional teams to get started on feature enablement. 

The feature enablement benefits from its modular design that is simple to 

maintain.
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 Open Source System Firmware Model
The ideal philosophy of open source system firmware is to make sure 

that all pieces of the firmware are open source, specifically, the ones 

required for the boot process post CPU reset. This effort of achieving the 

system firmware code is 100 percent open source and has significant 

dependency over the underlying platform hardware design. Typically, 

due to the unavailability of the detailed hardware interface document 

and programming sequence for boot-critical IPs like memory controller, 

system firmware projects should choose the hybrid system firmware model 

over complete open source system firmware. RISC-V is a good example 

of an open standard hardware specification that allows pure open source 

system firmware development on RISC-V-based embedded systems, 

personal computers, etc. The word pure being used here intentionally 

to differentiate a firmware project that supports closed source blobs for 

platform pre-reset flow from the transparent system reset flow (pre and 

post CPU reset) with all possible open source firmware.

There are several open source system firmware projects available, and 

this section is about having a detailed overview about expectations from 

the future open source system firmware. Hence, future system firmware 

will focus not only on getting rid of proprietary firmware blobs but also 

on adopting a modern programming language for developing system 

firmware. oreboot is an aspiring open source system firmware project that 

is slowly gaining momentum by migrating its supports from evaluation 

boards to real hardware platforms. oreboot has a vision of pure open 

systems, meaning firmware without binary blobs. But to add the latest 

x26-based platforms, it had made an exception to include only boot-

critical blobs (for example, manageability firmware, AMD AGESA, FSP for 

performing specific silicon initialization), where feature implemented by 

blobs during boot is not possible to implement in oreboot.

This section will provide an architecture overview of oreboot and its 

internals, which will be valuable for developers to learn for preparing 
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themselves for system firmware architecture migration into a more 

efficient and safe programming language. It’s like a recurrence of events 

that happened a few decades back that had migrated the present system 

firmware programming language to C from assembly.

 oreboot = Coreboot - C + Much More

At a high level, it’s easy to define oreboot as downstream of the coreboot 

project, which is developed without the C programming language. The 

oreboot system firmware project has zero C code, very minimal code 

written in assembly to just set up the programming environment, and 

remaining code in the Rust language. With the introduction of the Rust 

code for system firmware development, it offers better security and 

reliability. The oreboot image is licensed under the GPL, version 2. Here 

are the design principles of oreboot, which make it different from the other 

boot firmware used on embedded systems:

• oreboot is focused on reducing the firmware boundary 

to ensure instant system boot. The goal for oreboot is to 

have fewer than one boot on embedded devices.

• It improves the system firmware security, which 

typically remains unnoticed by the platform security 

standards with a modern, safe programming language. 

Refer to Appendix A for details about the usefulness 

of Rust in system firmware programming, which deals 

with direct memory access and even operations that 

run on multithreaded environments.

• It removes dedicated ramstage usage from the boot 

flow and defines a stage named Payloader Stage. This 

will help to remove the redundant firmware drivers and 

utilities from LinuxBoot as payload.
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• It jumps to the kernel as quickly as possible during 

boot. Firmware shouldn’t contain the high-level device 

drivers such as network stack, disk drivers, etc., and it 

can leverage the most from LinuxBoot.

Currently, oreboot has support for all the latest CPU architecture, and 

adding support for the newer SoC and mainboards are a work in progress. 

Currently the RISC-V porting being done using oreboot is fully open 

sourced. In addition, it’s able to boot an ASpeed AST2500 ARM-based 

server management processor as well as a RISC-V OpenTitan “earlgrey” 

embedded hardware.

 oreboot Code Structure

The source code organization of an oreboot project is similar to coreboot 

with a more simplified build infrastructure. The makefile parts of oreboot 

directories are much simpler; unlike coreboot, they don’t contain the 

control flow. The .toml-based configuration file is used to define and 

configure sets of tasks to run as part of control flow. A task is Rust code that 

needs to be executed. Tasks can have dependencies that are also tasks that 

will be executed before the current task itself. The following table describes 

the oreboot code structure:

Directory Description

src/arch lists of supported Cpu architecture, for example: armv7, armv2, 

risc-v, x26, etc.

src/drivers Supported firmware drivers, written in rust, that follow oreboot 

unique driver model, for example: clock, uart, spi, timer, etc.

src/lib generic libraries like devicetree, util, etc.
(continued)
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(continued)

Directory Description

src/mainboard lists of supported mainboards as part of the oreboot project. 

this list contains emulation environments like qemu, engineering 

board such as upsquared based on x26, and hiFive the riSC-V 

based development board, BmC platform ast2500, etc.

each mainboard directory contains a makefile and Cargo.toml 

file to define the build dependencies, which will allow it to build 

all boards in parallel.

example of Cargo.toml:

[dependencies]

cpu = { path = "../../../cpu/armltd/cortex-a9"}

arch = { path = "../../../arch/arm/armv7"}

payloads = { path = "../../../../payloads"}

device_tree = { path = "../../../lib/device_

tree" }

soc = { path = "../../../soc/aspeed/ast2500" }

[dependencies.uart]

path = "../../../drivers/uart"

features = ["ns16550"]

include source files written in rust (.rs) and assembly (.S) as 

per the boot phase requirements.

two special files reside in the mainboard directory as fixed-

dtfs.dts to create the flash layout and describe system 

hardware configuration as mainboard.dts. mainboard.dtb 

is the binary encoding of the device tree structure.
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Directory Description

src/soc Source code for SoC that includes clock programming, early 
processor initialization, setting up code environment, Dram 
initialization sequence, chipset registers programming, etc.

each SoC directory also contains Cargo.toml that defines 
the dependent drivers and library required for SoC-related 
operations.

payloads/ library for payload-related operations like loading into memory 

and executing.

tools/ tools directory that contains useful utilities like layoutflash 

to create an image from binary blobs, as described in the layout 

specified using device tree, bin2vmem to convert binary to 

Verilog Vmem format, etc.

README.md Describes the prerequisites to getting started with oreboot, 

cloning source code, compilation, etc., useful for the first-time 

developer.

Makefile.inc this makefile is included by the project mainboard directory 

makefile.

 oreboot Internals

This section will guide developers through the various key concepts 

of oreboot that are required to understand its architecture. Without 

understanding these architectural details, it would be difficult to 

contribute to a project. Also, these are the key differentiating features for 

oreboot, compared to the coreboot project.
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Flash Layout

Flash layout specifies how different binaries as part of oreboot are getting 

stitched together to create the final firmware image (ROM) for flashing 

into the SPI Flash. This file is named fixed-dtfs.dts, belonging to each 

mainboard directory.

oreboot has replaced the coreboot file system (CBFS) with the Device 

Tree File System (DTFS). It is easy to expose the layout of the flash chip 

without any extra OS interface. DTFS provides an easy method to describe 

the different binary blobs.

Here is sample code to describe the different regions belonging to the 

flash layout (see Figure 1-12):

area@x {

   description = "Boot Blob";

   offset = <0xff0000>;

   size = <0x20000>; // 512KiB

   file = "$(TARGET_DIR)/bootblob.bin";

};

Chapter 1  Spotlight on Future Firmware



53

Figure 1-12. 32MiB flash layout

The description field defines the type of binary, offset is the base 

address of the region, the size field specifies the region limit, and the file 

field is used to mention the path of the binary. x is the region number 

inside the flash layout, for example: boot blob, rampayload, NVRAM, 

etc. With reduced boot phases, the oreboot architecture allows ample 

headroom in flash.
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Build Infrastructure

coreboot uses make menuconfig to allow configuration, but oreboot 

doesn’t have such a provision; hence, it relies on conditional compilation. 

An oreboot build starts when the developer executes the make command 

from a specific mainboard directory. The code inside src/mainboard/*/*/

src/main.rs starts with assembly instruction first, which performs 

the minimal amount of initialization that is required to call into the 

Rust program. Compared to other C-based firmware modules, which 

have predefined entry points such as main(), here main.rs has the pub 

extern "C" fn 'entry_func_name' method that is being called from the 

assembly to start the program. The code written in Rust does the platform 

initialization and prepares the system to load and run the payload. 

The mainboard code uses only the core library, which means no heap 

allocated structures and that arrays should be with statically allocated size. 

See Figure 1-13.
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Figure 1-13. oreboot build flow

The binary generation process is a two-step approach.

• Create an executable and linking format (ELF) binary 

from source code using the cargo build command.

• Convert the .elf file to binary format (.bin) with the 

rust objcopy command.

The output binary (.bin) belongs to a region specified using the file 

field as part of the flash layout file. Now these binaries need to construct an 

image that will be flashed into the device. The tool name layoutflash is 
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(source code belongs to the tools directory as mentioned earlier) used to 

construct the final binary (.ROM). It takes arguments as an oreboot device 

tree to specify the image layout and compiled binary files generated by the 

compilation process.

Device Tree

The DTS specification specifies a construct called a device tree, which is 

typically used to describe system hardware. A device tree is a tree data 

structure with nodes that describe the device present in the system. 

Each node has a value that describes the characteristics of the device. 

At compilation, the boot firmware prepares the device information in 

the form of device tree that can’t necessarily be dynamically detected 

during boot, and then during boot, the firmware loads the device tree 

into the system memory and passes a pointer to the device for the OS 

to understand the system hardware layout. Unlike coreboot, the device 

tree structure prepared by oreboot is more scalable and can be parsed by 

existing OSs without any modification.

In oreboot, the device tree is mainly used to serve two different 

purposes.

• Hardware device tree: Part of the mainboard directory, 

this is used to describe the system hardware that the 

system firmware is currently running. This is typically 

named after the mainboard; for example, a device tree 

name for RISC-V processor–based development board 

HiFive is hifive.dts.

• oreboot device tree: This is the device tree used to define 

the layout of the image that is flashed into the device.

The device_tree library inside the src/lib source code is used to 

operate on the device tree data structure. Device Tree Syntax (DTS) is a 

human-friendly text representation of the device tree, which is used by 
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the Device Tree Compiler (DTC) to convert into either Device Tree Blob 

(DTB) format or Flattened Device Tree (FDT) format, a binary encoding 

of the device tree structure. Figure 1-14 shows an example representation 

of a simple hardware device tree that represents the HiFive board. Device 

nodes are shown with properties and values inside each node.

Figure 1-14. Device tree example from oreboot HiFive mainboard

In the previous example, cpus, memory, refclk, and serial are node 

names, and root node is identified by a forward slash (/). @ is used to 

specify the unit-address to the bus type on which the node sits.
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Driver Model

oreboot defines an unique driver model that creates a driver trait, an 

interface that implements four functions: init(), read(), write(), and 

shutdown(). The details of these functions are as follows:

Driver Functions Description

init() initializes the device.

pread() positional read. it takes two arguments:

- First argument: a mutable buffer that will get filled data from 

the driver.

- Second argument: the position that one would like to read 

from.

the function returns the result; the type of the result could be 

either a number, defined the number of bytes being read, or an 

error. if there are no more bytes to read, it returns an end-of-file 

(eoF) error.

pwrite() positional writing. it takes two arguments:

- First argument: a buffer that contains data is used by the driver 

to write on the hardware.

- Second argument: the position that one would like to write into.

the function returns the number of bytes written.

shutdown() Shuts down the device.

This model is useful for different types of devices like block devices and 

character devices since the driver could ignore the position like the offsets 

while operating on hardware devices. Here are some examples of different 

driver types that oreboot supports:
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• Physical device drivers: The drivers that are used to 

operate on real hardware devices like memory drivers 

are capable of performing reads/writes to physical 

memory addresses, serial drivers used to read/writes 

to serial devices, clock drivers to initialize the clock 

controller present on the hardware, and DDR drivers to 

perform DRAM-based device initialization.

• Virtual drivers: Drivers that are not associated with 

any real hardware device but rather used to create 

the interface for accessing the hardware device. For 

example, the union driver is capable of stream input or 

output to multiple device drivers; refer to the following 

example of mainboard, which implements the union 

driver for a serial device; and section reader, which 

reads a section from another device window specified 

using offset and size and returns EOF when the end of 

the window is reached.

The following is an example of a mainboard implementing more than 

one UART. The system firmware would like to use all of them and hence 

implements the union driver as shown. The oreboot mainboard code 

creates an array of these drivers, and the union driver uses this array. 

Meanwhile, the console calls the init() function, initializes all these 

UART controllers, and then writes a string using the pwrite() function to 

write into all these UARTs.

let mut uarts = [

     &mut PL011::new(0x1E72_3000, 115200) as &mut dyn Driver, 

// UART 1

     &mut PL011::new(0x1E72_D000, 115200) as &mut dyn Driver, 

// UART 2

     &mut PL011::new(0x1E72_E000, 115200) as &mut dyn Driver, 

// UART 3
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     &mut PL011::new(0x1E72_F000, 115200) as &mut dyn Driver, 

// UART 4

];

let console = &mut Union::new(&mut uarts[..]);

console.init();

console.pwrite(b"Welcome to oreboot\r\n", 0).unwrap();

 oreboot Boot Flow

The boot flow defined by oreboot is similar to coreboot, except for the fact 

that oreboot has accepted that a firmware boundary has to be reduced, 

so it makes sense to leverage more from the powerful payload offerings as 

LinuxBoot with a more mature Linux kernel driver. oreboot replaces the 

need to have a dedicated stage like ramstage, which is meant to perform an 

operation that can be replaced by a powerful payload and load a payload. 

The oreboot boot flow provides an option to load the Linux kernel as part 

of the flash image as the payload from the payloader stage.

Facts Some of the work done in a coreboot project is separating 
the payload loading and running operations from a dedicated stage 
like ramstage and having a flexible design where the bootloader is 
free to decide which stage can be used to load the payload. this 
work is known as rampayload or coreboot-lite, which influences the 
design of oreboot having an independent stage for payload operations 
and being called from prior stages as per the platform requirements.

The following sections explain the oreboot boot flow in detail with 

a hardware porting guide. The oreboot boot process is divided into 

three stages.
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• Bootblob: This is the first stage post CPU reset, which 

is executed from the boot device. It holds the first 

instruction being executed by the CPU. This stage is 

similar to coreboot’s first stage called bootblock.

• Romstage: This is functionally similar to the coreboot 

romstage boot phase, which is intended to perform the 

main memory initialization.

• Payloader stage: This is only intended to load and run 

the payload. This is a feature differentiator from the 

coreboot, where the ramstage boot state machine has 

tasks to load and run payload at the end of hardware 

initialization.

Here is a more detailed description of each stage operations based 

on the real hardware. The hardware used for this demonstration of the 

oreboot boot flow is the open source HiFive Unleashed Board based on the 

SiFive FU540 processor. Figure 1-15 shows the hardware block diagram.

Figure 1-15. Hardware block diagram of SiFive-HiFive Unleashed

Chapter 1  Spotlight on Future Firmware



62

In this example, RISC-V SoC has four pins (0001, MSEL0 is 1 and 

MSEL1-3 are set to 0) called MSEL to choose where the bootloader is, and 

Zeroth Stage Boot Loader (ZBL) is stored in the ROM of the SoC. ZBL loads 

oreboot from the SPI Flash, and control reaches the bootblob.

Bootblob

In the oreboot boot flow architecture, bootblob is the first stage, which 

gets control upon the CPU coming out from the reset. In a multiprocessor 

boot environment, it’s getting executed by the Boot Strap Processor (BSP) 

using temporary memory. Operations performed by the bootblock phase 

include the following:

• The early piece of the code in bootblob is written in 

assembly, which is executed by the CPU immediately 

after release from power-on reset. It performs the 

processor-specific initialization as per the CPU 

architecture.

• It sets up the temporary RAM as Cache as RAM, aka 

CAR or SRAM, as physical memory is not yet available.

• It prepares the environment for running Rust code like 

setting up the stack and clearing memory for BSS.

• It initializes UART(s) to show the sign-of life using the 

debug print message “Welcome to oreboot.”

• It finds the romstage from the oreboot device tree and 

jumps into the romstage.

Here is some sample bootblob code written in assembly belonging to 

the SoC directory:
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soc/sifive/fu540/src/bootblock.S

/* Early initialization code for RISC-V */

.globl _boot

_boot:

       # The previous boot stage passes these variables:

       #   a0: hartid

       #   a1: ROM FDT

       #  a0 is redundant with the mhartid register. a1 might not 

be valid on

       # some hardware configurations, but is always set in QEMU.

       csrr a0, mhartid

setup_nonboot_hart_stack:

       # sp <- 0x02021000 + (0x1000 * mhartid) - 2

       li sp, (0x02021000 - 2)

       slli t0, a0, 12

       add sp, sp, t0

       # 0xDEADBEEF is used to check stack underflow.

       li t0, 0xDEADBEEF

       sw t0, 0(sp)

            # Jump into Rust code

       call _start_nonboot_hart

Figure 1-16 represents the operations performed by the bootblob stage 

pictorially.
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Figure 1-16. Operational diagram of bootblob stage

Romstage

The romstage is the stage invoked right after the bootblob in the boot 

flow. This stage gets executed from the SPI Flash and performs DRAM 

initialization. The responsibilities of the romstage are as follows:

• Perform early device initialization, for example 

configuring memory-mapped control and status 

register for controlling component power states, resets, 

clock selection and low- level interrupts, etc.

• Initiate the DRAM initialization. Configure memory 

controllers as part of the SoC hardware block. This 

process involves running SoC vendor-specific routines 

that train the physical memory or implementing 

memory reference code in Rust (basically a direct 

porting from C to Rust). For the HiFive Unleashed 

platform, oreboot has implemented DDR initialization 
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code in Rust belonging to soc/sifive/fu540/

src/ddr*.rs by referring to open source FSBL 

implementation.

Here is some sample romstage code written in Rust that 

initializes clocks:

// Peripheral clocks get their dividers updated when the PLL 

initializes.

let mut clks = [spi0 as &mut dyn ClockNode, spi1 as &mut dyn 

ClockNode, spi2 as &mut dyn ClockNode, uart0 as &mut dyn 

ClockNode];

let mut clk = Clock::new(&mut clks);

clk.pwrite(b"on", 0).unwrap();

Figure 1-17 represents the operations performed by the romstage 

pictorially.

Figure 1-17. Operational diagram of romstage
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Payloader Stage

The Payloader stage is the first stage on the RISC-V platform running from 

the DRAM after physical memory is available. Unlike coreboot, where the 

ramstage boot phase has many other tasks along with loading and running 

the payload at the end of the ramstage, in oreboot, the payloader stage has 

only one job: find, load, and run a payload. The payloader stage doesn’t 

have any high-level firmware device drivers like storage device, audio 

device, etc. This helps to reduce the complexity and save the SPI footprint 

compared to other system firmware. Here is a sample payloader stage code 

written in Rust that loads a payload file by the path specified in the oreboot 

device tree and jumps into it:

use payloads::external::zimage::PAYLOAD;

let p = PAYLOAD;

writeln!(w, "Loading payload\r").unwrap();

p.load();

writeln!(w, "Running payload entry 0x{:x} dtb 0x{:x}\r", 

p.entry, p.dtb).unwrap();

p.run();

Figure 1-18 represents the operations performed by the payloader 

stage pictorially.
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Figure 1-18. Operational diagram of payloader stage

Payload

An oreboot project by default uses LinuxBoot as a payload, which allows it 

to load the Linux kernel from the SPI Flash into DRAM. The Linux kernel 

is expected to initialize the remaining devices using kernel drivers that 

include block devices and/or network devices etc. Finally, locate and 

load the target operating system using kexec. LinuxBoot uses u-root as 

initramfs, which is the root filesystem that the system has access to upon 

booting to the Linux kernel. systemboot is an OS loader as part of u-root 

to perform an iterative operation to attempt boot from a network or local 

boot device.

Figure 1-19 represents the operations performed by the payload 

(LinuxBoot) pictorially.
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Figure 1-19. Operational diagram of payload stage

The payload operation is expected to end when the Linux kernel 

part of LinuxBoot calls into the kernel image from the block device or 

network and executes the first instruction. Figure 1-20 shows the final 

system hardware component initialization state while it reaches an 

operating system.
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Figure 1-20. System hardware state at the kernel

To summarize, the complete open source system firmware model 

using oreboot like the bootloader is not only meant to provide freedom 

from running proprietary firmware blobs on hardware. Additionally, 

it’s developed using safe system programming languages like Rust. The 

payloader userland is written in Go and advocates the architectural 

migration of the system firmware development using a high-level language 

in the future. Finally, a reduced boot phase allows ample free space in the 

flash layout, which will provide an opportunity to reduce the hardware bill 

of materials (BoM) cost with instant boot experience.

 Open Source Device Firmware Development
System firmware is the firmware that is running on the host CPU after 

it comes out from the reset. In traditional computing systems, system 

firmware is owned by independent BIOS vendors (IBVs), and adopting 
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the open source firmware model will help to get visibility into their code. 

This will help to design a transparent system by knowing the program 

is running on the underlying hardware, and it provides more control 

over the system. Earlier sections highlighted the path forward for system 

firmware development in the future using open source system firmware as 

much as possible. In a computing system, there are multiple devices that 

are attached to the motherboard, and each device has its own firmware. 

When a device is powered on, firmware is the first piece of code that 

runs and provides the required instructions and guidance for the device 

to be ready for communicating with other devices or for performing a 

set of basic tasks as intended. These types of firmware are called device 

firmware. Without device firmware being operational, the device wouldn’t 

be able to function. Based on the type of the devices, a complexity in the 

firmware is introduced. For example, if a device is a simple keyboard 

device, then it has only a limited goal and no need to worry about regular 

updates, whereas more complex ones, like graphics cards, need to define 

an interface that allows it to interact with the system firmware and/or an 

operating system to achieve a common goal, which is to enable the display.

The majority of device firmware present on consumer products 

is running proprietary firmware that might lead to a security risk. For 

example, at the 2014 Black Hat conference, security researchers first 

exposed a vulnerability in USB firmware that leads to a BadUSB attack, a 

USB flash device, which is repurposed to spoof various other device types 

to take control of a computer, pull data, and spy on the user. A potential 

solution to this problem is that device firmware should be developed using 

open source so that the code can be reviewed and maintained by others 

rather than only the independent hardware vendors (IHVs).

This section will describe the evolution in device firmware 

development for discrete devices that has a firmware burned into 

its SPINOR.
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 Legacy Device Firmware/Option ROM
An option ROM (OpROM) is a piece of firmware that resides either in the 

system firmware code as a binary blob or on an expansion card, which 

needs to be copied into system memory and executed using legacy 

interrupts by system firmware during the platform initialization phase. It 

acts as an interface between the system firmware and underlying specific 

hardware device. The BIOS Boot Specification (BBS) was developed to 

standardize the initialization sequence of OpROM. Figure 1-21 shows a 

sample discrete graphics where VBIOS is located inside a dedicated chip.

Figure 1-21. Discrete graphics card hardware block diagram
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A common example of OpROM is the Video BIOS (VBIOS), which 

can be used to program either on- board graphics or discrete graphics 

cards and is specific to the device manufacturer. In this section, VBIOS is 

referred to and used to initialize the discrete graphics card after the device 

is powered on. It also implements an INT 10h interrupt (interrupt vector 

in an x26-based system) and VESA BIOS Extensions (VBE) (to define a 

standardized software interface to display and audio devices) for both the 

pre-boot application and system software to use.

A video services BIOS interrupt sets up a real mode interrupt handler; 

meaning, to get this interrupt serviced, the system needs to enter into real 

address mode. As real mode is limited to 20-bit addressing, it provides 

a limited space for OpROMs. A total 122KB (between 0xc0000 to 0xdffff, 

sometimes if it’s extended and then stored at 0xe0000–0xeffff, and so on) is 

shared by all option ROMs. An OpROM typically compacts itself by getting 

rid of some initialization code (leaving behind a smaller runtime code). 

During the power- on self-test (POST), the BBS specifies that the BIOS 

will detect and shadow VBIOS into 0xc0000, and it will traverse the PCI 

configuration space to check the Expansion ROM base address (PCI config 

space header type 00 and 20 devices only have an expansion ROM base 

address to support an add-on ROM) and copy the discrete card OpROM 

from MMIO space to the predefined OpROM region. The system firmware 

then scans the region and detects if the OpROM has a PnP option ROM 

header. The following table describes the PnP OpROM header structure:

Offset Length Value Description

0x00 0x02 0xaa55 Signature

0x02 0x01 Varies option rom length

0x03 0x4 Varies initialization vector

0x07 0x13 Varies reserved

0x12h 0x02 Varies offset to pCi data structure

0x1a 0x02 Varies offset to pnp expansion header structure
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• Signature: All ISA expansion ROMs are currently 

required to identify themselves with a signature word of 

AA55h at offset 0. This signature is used by the system 

firmware as well as other software to identify that an 

option ROM is present at a given address.

• Length: The length of the option ROM in 512 byte 

increments.

• Initialization vector: The system BIOS will execute 

a far call to this location to initialize the option 

ROM. The field is four bytes wide even though most 

implementations adhere to the custom of defining 

a simple three-byte NEAR JMP. The definition of the 

fourth byte may be OEM specific.

• Reserved: This area is used by various vendors and 

contains OEM-specific data and copyright strings.

• Offset to PCI data structure: This location contains a 

pointer to a PCI data structure, which holds the vendor-

specific information.

• Offset to PnP expansion header: This location contains 

a pointer to a linked list of option ROM expansion 

headers.

The system firmware performs a read operation to read the first two 

bytes of the PnP OpROM structure and verifies the signature as 0xAA55. If 

a valid option ROM header is present, then the system firmware reads the 

offset + 02h to get the length of the OpROM and then performs a far call 

to offset + 03h to initialize the device. After video OpROM has initialized 

the graphics controller, it provides lists of services like setting the video 

mode, character and string output, and other VBE functions to operate in 

graphics mode.
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Here is a list of a few supported functions implemented by 

OpROM. The system BIOS needs to hook INT 10h to call these functions as 

per programming requirements.

General Video Service Functions (AH = 00 to FF, except 0x4F)
Operation Function Subfunction

Set Video mode ah=0x00 al=Video mode

Set Cursor 

Characteristics

ah=0x01 Ch bits 0-4 = start line for cursor in character 

cell

bits 5-6 = blink attribute (00=normal, 

01=invisible, 10=slow, 11=fast)

Cl bits 0-4 = end line for cursor in character cell

Set Cursor position ah=0x02 Dh,Dl = row, column

Bh = page number (0 in graphics modes;

0–3 in modes 2 and 3; 0–7 in modes 0&1)

write String (at, Vga) ah=0x13 al = mode

Bl = attribute if al bit 1 clear

Bh = display page number

Dh,Dl = row,column of starting cursor position

CX = length of string

eS:Bp -> start of string

VBE Functions (AH = 0x4F and AL = 0x00 to 0x15)

return VBe Controller 

information

ah=0x4F al = 0x00; eS:Di = pointer to buffer in which to 

place VbeinfoBlock Structure.

return VBe mode 

information

ah=0x4F al = 0x01; CX = mode number; eS:Di = pointer 

to modeinfoBlock Structure.

Set VBe mode ah=0x4F aX = 02h

BX = Desired mode to set

eS:Di = pointer to CrtCinfoBlock structure
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Figure 1-22 describes the communication between video OpROM and 

system firmware.

Figure 1-22. Discrete graphics card hardware block diagram

In this sample implementation, the system firmware calls video OpROM 

to initialize the graphics controller and uses video services to set the display 

to show the pre-OS display screen or OS splash screen during boot.

Figure 1-23 decodes the video OpROM from the system memory 0xc0000 

location, and Figure 1-24 shows the OpROM initialization code in assembly.

Figure 1-23. Display video BIOS option ROM at address 0xC0000
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Offset + 03h specified the initialization vector, which will transfer the 

call into video OpROM initialization code for display initialization, which 

is referred as jmp 0xbd11.

This execution of OpROM for device initialization has several 

limitations while working with modern firmware solutions. Option ROM 

attacks can be considered an initial infection or ones to spread malicious 

firmware from one firmware component to another. Compromised 

OpROM firmware can be viewed as an initial method of infection that 

remains persistent even after modifying the system firmware. There is 

still a legacy implementation, where the system firmware and/or payload 

relies on the option ROM for device initialization and runtime services. 

Therefore, modern devices like discrete graphics cards and network cards 

still need to support legacy OpROMs.

Figure 1-24. Initialization vector address at address 0xC0003
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 UEFI OpROM
The Graphics Output Protocol replaces the legacy video BIOS and 

eliminatew the VGA hardware functionality from the discrete graphics 

card or on-board graphics controller. It’s an UEFI implementation to create 

the generic GOP UEFI display driver image that can be either located on 

the device ROM or present inside system firmware. GOP has some unique 

advantages over legacy OpROM.

• It has a modern and well-defined interface, which is 

implemented using an industry-standard specification.

• All GPUs within a platform become “equal,” and there’s 

no more unique “VGA-enabled VGA.”

• Code is written in C and doesn’t need a legacy interrupt 

handler to communicate between the platform 

and GPU.

• Implementing UEFI graphics OpROM using EBC (EFI 

Byte Code) allows a single image to operate on multiple 

CPU architectures.

• There are clearer and portable solutions that allow new 

features to be implemented.

The services implemented by the GOP driver are available only until 

EFI Boot Time Services are available (prior to ExitBootServices()). 

However, the framebuffer populated by the GOP driver persists, 

meaning the OS graphics driver and applications can continue to use 

the framebuffer for graphics output. The implementation of the UEFI-

compliant video option ROM starts with an implementation of the UEFI 

GOP driver. The GOP driver follows the UEFI driver model and hence 

installs a driver binding protocol at the entry point of the UEFI driver. The 
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GOP driver binding protocol implements functions such as Supported(), 

Start(), and Stop().

• Supported(): The “Supported” method of the GOP 

driver binding protocol tests to see whether the given 

handle is a manageable adapter. Also, check that 

EFI_DEVICE_PATH_PROTOCOL and EFI_PCI_IO_PROTOCOL 

are present to ensure that the handle that is passed is 

a valid PCI device. The PCI I/O protocol gets the PCI 

configuration header from the device and verifies that 

the device is supported by the present GOP driver.

• Start(): The “Start” method of the GOP driver binding 

protocol tells the graphics driver to start managing the 

controller. The GOP driver uses the device-specific 

knowledge to perform the following operations:

• Initialize the graphics adapter.

• Initialize platform parameters like LID Present, 

Dock Supported, etc.

• Initialize the display manager module that 

enumerates all the supported displays and checks 

its live status and EDID to detect the enabled 

display device.

• Create child handles for each detected and enabled 

physical output device and install the EFI_DEVICE_

PATH_PROTOCOL.

• Get EDID information from each enabled physical 

output device and install EFI_EDID_DISCOVERED_

PROTOCOL on the child handle.
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• Create child handlers for each valid combination 

of two or more video output devices and install 

EFI_DEVICE_PATH_PROTOCOL.

• Set the initial mode, required to initialize the mode 

field of GOP.

• Install the GRAPHICS_OUTPUT_PROTOCOL on the 

selected device.

• Stop(): The Stop function performs the opposite 

operation of the Startfunction. In general, Stop() 

functions uninstall all protocols, close the protocol 

instances, release all resources, and disable the 

graphics adapter.

Figure 1-25 shows an example of GOP driver stack implementation.

Figure 1-25. GOP driver implementation
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Apart from initializing the graphics adapter, the GOP protocol 

publishes three functions: QueryMode(), SetMode(), and Blt(). They 

allow the system firmware to communicate with the device hardware 

to configure the display capabilities. These functions replace the legacy 

OpROM VBE functionality.

• The QueryMode() function is used to return extended 

information on one of the supported video modes. It’s 

important that QueryMode() only return modes that can 

actually be displayed on the attached display device.

• The SetMode() function allows system firmware to 

select the specific mode based on the mode argument, 

between 0 and numModes.

• The Blt() function is used for transferring information 

to and from the video buffer. It allows graphics contents 

to be moved from one location of the video frame 

buffer to another location of the video frame buffer.

The GRAPHICS_OUTPUT_PROTOCOL.Mode pointer is populated when 

the graphics controller is initialized and gets updated with the SetMode() 

function call. The FrameBufferBase member of this object may be used 

by a UEFI OS loader or OS kernel to update the contents of the graphical 

display after ExitBootServices() is called and the Graphics Output 

Protocol services are no longer available. A UEFI OS may choose to use this 

method until a graphics driver can be installed and started.

The EDKII build infrastructure tools allows one to convert one or more 

UEFI drivers in PE/COFF image formats into a single PCI Option ROM 

image that can be included with a discrete add-in card. When a discrete 

add-in card, for example, a graphics card, is attached over a PCI slot into 

a target platform, the PCI Bus Driver detects the presence of PCI OpROM 

contents, and the UEFI driver is loaded into memory and executed 

automatically. See Figure 1-26.
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Figure 1-26. Hybrid ROM layout

EfiRom is the utility located inside the EDKII source code at 

BaseTools/Source/C/EfiRom and is used to build PCI OpROM images 

containing UEFI drivers, Legacy OpROM, or both. It also allows UEFI 

drivers to be compressed using the UEFI compression algorithm as per 

the UEFI specification. The following command shows the method to 

generate a single PCI OpROM image that combines one UEFI binary and 

one legacy OpROM:

EfiRom -o FinalOpRom.rom -f <vendor_id>-i <device_id> -ec 

File1.efi -b Legacy.bin
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Figure 1-26 shows the layout of the hybrid OpROM image located on a 

graphics add-on card.

Here is a comparison of interfaces implemented by the UEFI graphics 

driver part of UEFI OpROM and Legacy VGA BIOS:

Set a Display 
Mode

Retrieve EDID 
from a Display 
Device

Display Switch

GOP 
Driver

GRAPHICS_

OUTPUT_

PROTOCOL.

SetMode()

using EFI_EDID_

DISCOVERED_

PROTOCOL

reentrant with different child 

handle in EFI_DRVER_BINDING.

Start() followed by a 

SetMode()

Legacy
VGA
BIOS

Set VBe mode 

using aX = 

0x4F02 and other 

subfunctions

VBe DDC 

extension aX = 

0x4F15 and other 

subfunctions

implement vendor-specific Vga 

BioS extension

Currently, the majority of GPU vendors have migrated graphics device 

firmware to a GOP driver–based solution for add-on graphics cards or 

on-board GPU to be legacy-free. The GOP driver images that are part of 

the add-on graphics card can be signed and authenticated by the vendor 

and can be verified using Secure Boot. But for the hybrid image on an 

add-on graphics card, Secure Boot is unable to verify the legacy OpROM 

image as the legacy VGA BIOS doesn’t support authentication and hence is 

considered to be a security threat.

 Why Is Open Source Device Firmware Needed?
Typically, IHVs are developing firmware for the device that is flashed 

into the ROM, with an assumption that the device doesn’t need periodic 

updates. But there might be cases where preflashed device firmware 

exposed some vulnerability while operating as part of the whole system 
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and communicating with other devices and the host CPUs. Also, these 

devices have dedicated firmware storage for to keep the device firmware 

in, which is not accessible by the host CPU and hence unable to provide 

a patch over the runtime kernel or system firmware during boot. Here are 

several factors that highlight the need for an open source model while 

developing the device firmware:

• Performance: As most device firmware is not able to 

handle the runtime updates and becomes stale over 

the period of time, it may not be able to work with the 

latest processor and chipsets. Open source firmware 

development would provide an opportunity to update 

the device firmware code with the latest algorithm 

and research that would provide better performance 

compared to proprietary firmware.

• Security: Open source device firmware doesn’t allow 

any hidden backdoor for snooping into the system. 

As device firmware would get regular maintenance, 

common vulnerabilities are expected to get fixed and 

updated without any delay.

• Extensibility: While vendor device firmware comes with 

fixed sets of capability, open source firmware would 

expose its capability beyond its fixed scope.

• Community support: The open source community 

provides more eyes and hands for maintaining 

the code.

• Cost: The product source code is available freely 

using a GPL license and hence doesn’t require any 

subscription and licensing fees.
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Many wireless routers are using open source device firmware. For 

example, TP-Link, which is Xiaomi router firmware, is derived from 

OpenWrt, an open source firewall/router distribution based on the 

Linux kernel.

 Open Source Manageability Firmware  
Development
In computing, the system owner typically has access to control and 

manage all the required hardware and software services for the target 

device. To satisfy the need for hardware management, the system 

administrator might set up an in-band management system through 

Virtual Network Computing (VNC) and Secure Shell (SSH) that provides 

remote access for the device over the network or using serial ports. This 

mechanism to access the device is typically cost effective because software 

that is required for remote management is installed on the system itself 

and works only after the system has booted to an operating system. Hence, 

in-band management has limited scope, and when the system is off, it’s 

not possible to be managed by in-band management. It also isn’t capable 

of meeting the remote IT infrastructure management requirements, where 

an IT administrator would like to access system firmware settings, reinstall 

the operating system remotely, or provide a fix for when the system 

is unable to boot. Figure 1-27 shows the in-band management block 

diagram.
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Figure 1-27. High-level diagram of in-band remote management

This mode of managing the remote systems doesn’t have any 

dependency over the underlying firmware running on the remote 

system. When the network is down or the system is in an off state, one 

needs physical access to bring the system back into the network; it needs 

someone to travel near to the device, which might not be a feasible 

solution for data centers and remote sites. The Natick project from 

Microsoft is building the world’s first underwater data center. Therefore, 

out-of-band management provides an alternative path for managing the 

remote system. Even when the system is not on a network, it is turned off, 

in sleep mode, hibernated, or inaccessible to any mode of in-band access. 

This mode of operation relies on the remote management hardware, 

which is completely independent of the main processor power supply 

and network connection and can even perform remote operations such as 

reboot, shutdown, and monitoring the hardware sensors (i.e., fan speed, 

power voltages, hard disk health, chassis intrusion, etc.). Figure 1-28 shows 

the out- of- band remote management hardware block diagram.
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Figure 1-28. High-level diagram of out-of-band remote management

The modern server motherboards are the default coming with a built-

in remote management controller. The out-of-band remote management 

can use either dedicated network interface controllers (NICs) or shared 

NICs for remote access. The shared NIC can be used for multiplexing the 

Ethernet connection between the host system operating system and the 

remote management controller so that while incoming traffic flows on 

the hardware, it is routed to the remote management controller before 

reaching the host system. It also has multiple interfaces like Enhanced 

Serial Peripheral Interface (LPC/eSPI), PCIe, SMBUS, USB, etc., to 

communicate with the host system.

Here are the operations that a remote admin can perform with out-of-

band enabled:

• Keyboard-video-mouse (KVM): Out-of-band 

management allows access to host CPU resources 

like the keyboard, video, and mouse, which provides 

broadcasting of video output to the remote terminals, 

and receiving the input from the remote keyboard and 

mouse can be used to configure the system firmware 

settings even prior to booting the OS.
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• Perform remote recovery: An admin can also access 

remote system disk images from the local boot media 

or over a network and therefore can be used to recover 

the system in case the OS crashes and the system 

reaches an OS recovery.

• Remote power on/off: The remote administrator can 

schedule wake and update-like features to ensure the 

system is always updated with critical security patches. 

It also ensures the system’s availability over the network 

24/7 using resource preservation by keeping the device 

in low- power mode after an update.

• Remote sessions: It allows client-initiated remote 

sessions to monitor, manage, and troubleshoot any pre-

OS and OS-related defects.

Out-of-band management requires seamless access of the system, 

and the remote management controller belongs to the platform hardware. 

The firmware that is running as part of the remote management controller 

is considered to be highly privileged components (Ring -3 as described 

earlier). This firmware remains active during the entire life of the system 

and can even control the system when it is powered off. Thus, any 

vulnerability that exists in the manageability firmware can easily remain 

hidden from the traditional security measures and put the entire system 

at risk where intruders can take over the system remote management and 

allow data exfiltration attacks.

This section will provide a brief overview of some manageability 

firmware that was developed using proprietary firmware and looking at the 

possibilities of migrating to the open source firmware.
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 Baseboard Management Controller
A baseboard management controller (BMC) is a special processor that 

sits on the server motherboard and is responsible for providing the server 

management. Other components like high-end switches and Just a Bunch 

of Disks (JBODs) and/or Just a Bunch of Flash (JBOFs) platforms also 

include BMCs for out-of-band management. The BMC is responsible 

for monitoring and managing the physical state of a computer, network 

server, or other sensor- based hardware and passing that information 

to the system administrator through an independent connection. The 

key parameters that BMC measures are temperatures and voltages, fan 

speeds, humidity, inventory data such as serial numbers or product 

names, and remote powering on/off of the main CPUs. It notifies the 

system administrator if any of these parameter values has drifted from 

its allowable known limit. It allows the system admin to take measures 

to avoid any anomalies in the server stability and reliability. Figure 1-29 

shows the hardware block diagram of a server platform using an ASPEED 

BMC chip (AST2500).

Figure 1-29. Server motherboard hardware block diagram with BMC
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Figure 1-30 shows the AST2500 BMC chip, which is the leading BMC 

chip used on the server platform (the latest is AST2600 with ARM Cortex 

A7) using an ARM11-based SoC with these features:

• Ethernet: The Reduced Media-Independent Interface 

(RMII) and Reduced Gigabit Media- Independent 

interface (RGMII) are interfaces to connect an Ethernet 

MAC block to a PHY chip.

• Flash memory: This is the Serial Peripheral Interface 

(SPI) flash memory that contains the BMC firmware for 

booting the SoC.

• Memory: This is 800Mbps DDR3 or 1600Mbps DDR4 

memory with 16-bit data bus width. Having more 

memory provides increased performance.

• PCIe: The on-chip PCIe 2D VGA provides a local 

display capability with resolution up to 1920×1200 

without adding an extra VGA add-on card.

• USB: The USB 2.0 virtual hub controller allows up to 

five devices and a USB 1.1 HID device controller for 

keyboard and mouse support.

• LPC/eSPI: This is a Low Power Count (LPC) or 

Enhanced SPI (eSPI) bus for communicating with 

the host.
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Figure 1-30. AST2500 hardware block diagram

BMC allows system administrators to make use of KVM functionality 

for remote redirection of the keyboard, video, and mouse to a remote 

network-attached management console. Hence, it allows the remote 

admin to perform the low-level tasks while the operating system is not yet 

available.

 Intelligent Platform Management Interface

The Intelligent Platform Management Interface (IPMI) is an interface 

specification that allows manageability firmware to monitor or manage the 

host system independent of the host CPU, system firmware, and operating 

system. IPMI is a message-based, hardware-level interface specification 

that is used by the system admin for out-of- band management of 
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computer systems. This specification, jointly developed by Intel, Hewlett 

Packard, Dell, and NEC, is intended to perform the following operations:

• OS-independent scenarios: Regular monitoring of 

platform-critical components like temperature. Various 

built-in sensors in the computer system and power 

supply voltage allow remote access to the system if 

the host system is powered off. It allows changing the 

BIOS settings for recovery boot and/or installing new 

operating systems into the block device.

• While the OS is running: It allows the admin to access 

the operating system login console remotely to manage 

services such as installing virtual drives, populating 

management data and structures to the system 

management software, etc.

IPMI supports the extension of platform management by connecting 

additional management controllers to the system. Figure 1-31 shows 

the IPMI subsystem block diagram, which consists of BMC as the main 

controller and other management controllers distributed among different 

system components that are referred to as satellite controllers. The BMC is 

the heart of the IPMI architecture that manages the interface between the 

system management software and the platform management hardware. 

It provides autonomous monitoring, event logging, and recovery control, 

and it works as the main channel between the system management 

software and the IPMB and ICMB. The Intelligent Platform Management 

Bus/Bridge (IPMB) is an I2C-based bus that provides a standardized 

interface between BMC and the satellite controllers within a chassis. It also 

serves as a standardized interface for auxiliary management add-in cards. 

The Intelligent Chassis Management Bus (ICMB) provides a standardized 

interface for connecting satellite controllers and/or the BMC in another 

chassis. By providing the standardized interface, a baseboard can be 

easily integrated into a variety of chassis that have different management 
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features. The Field Replaceable Unit (FRU) information is used to provide 

the inventory information, such as vendor ID and manufacturer, etc., 

about the boards that the FRU information device is located on. A sensor 

data record (SDR) repository provides the properties of the individual 

sensors (i.e., temperature, fan speed, and voltage) present on the board. 

Physical interfaces to the BMC include SMBUSs, the RS-232 serial console, 

and IPMB, which enables the BMC to accept IPMI messages from other 

management controllers in the system.

Figure 1-31. IPMI subsystem block diagram
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There is a significant concern that the BMC is a closed infrastructure 

that allows administrators to have direct access to the host systems. A 

direct serial connection to the BMC is not encrypted, and the connection 

over the LAN may or may not use encryption and might raise the platform 

security risks. The following sections provide some serious security 

concerns with BMC and the reason for open source adaptation in the BMC 

project.

Figure 1-32 shows the typical server platform remote management that 

allows remote accesses with BMC implementing IPMI specifications.

Figure 1-32. Remote server management using BMC-IPMI
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The assumption was that the admins would be managing the 

computer systems over the trusted and controlled network, and the IPMI 

stack doesn’t pay great attention to ensuring security. Many BMC firmware 

doesn’t implement Secure Boot. The BMC is the ultimate security liability 

due to its privileged operations, and a compromised BMC would allow 

attackers to have access to a remote network connection, which had been 

in the realm of physical administrative access.

The BMC would allow the remote admin to access the OS console 

and mount the virtual media, typically used for recovering remotely or 

installing a custom OS image. A group of security researchers has found 

a severe BMC vulnerability on a server platform where the virtual media 

service allows plaintext authentication, allows unencrypted data over 

network, uses a weak encryption algorithm using a fixed key compiled 

into the BMC firmware, and possibly allows authentication bypass while 

authenticated to the virtual media service. These weaknesses would 

allow an attacker to gain unauthorized access to the virtual media. The 

BMC hardware allows the creation of virtual USB devices. Hence, upon 

authenticating using a well-known default username and password for 

the BMC, an attacker would be able to perform any of a USB-based attacks 

against the server remotely including data exfiltration, booting from 

untrusted OS images, or direct manipulation of the system using a virtual 

keyboard and mouse. A study also reveals that more than 47,000 BMCs 

from different countries are exposed to the Internet. Also, an attacker 

who compromises the host system could use it to attempt to compromise 

the BMC as well, as BMC always remains on without power-off. Hence, it 

would be difficult to remove such malware from the BMC. A BMC rootkit 

could provide the attacker with backdoor access that remains hidden from 

IPMI access logs and insusceptible to host OS reinstallation or password 

changes. In 2019, a vulnerability was detected on the BMC chip, where 

malware could be installed on the BMC from the local host via the PCIe or 

LPC interface. Because of the closed nature of the IPMI implementation, 

once attackers gain control of the BMC, it’s difficult to know their presence 
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and remove them from the system. Such requirements lead the data 

centers to adopt the BMC firmware that is getting developed using open 

source projects.

 OpenBMC

The OpenBMC project is a Linux Foundation project, which is intended 

to replace the proprietary BMC firmware with a customizable, open 

source firmware implementation. OpenBMC is a Linux distribution for 

management controllers that is used in devices such as servers, rack 

switches, telecommunications, etc. In 2014, four Facebook engineers at 

Facebook’s hackathon event created the first prototype of the open source 

BMC firmware, called OpenBMC for BMC inside the Wedge (a rack switch 

developed by Facebook) platform. In 2018, OpenBMC became a Linux 

Foundation project. OpenBMC uses the Yocto Project for creating the 

building and distribution framework. It uses D-Bus as an interprocess 

communication (IPC) method. OpenBMC includes a web application for 

interacting with the firmware stack. OpenBMC added Redfish support for 

hardware management.

Facts redfish is an open industry-standard specification used for 
hardware management. it is defined by the Distributed management 
task Force (DmtF). openBmC uses redfish as a replacement for ipmi 
over lan.

The features being implemented by the OpenBMC include the 

following:

• Host management: power on/off, cooling, LEDs, 

inventory, and events

• Compliant to the IPMI 2.0 specification
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• Code update support for multiple BMC/BIOS images

• Provides web-based user interface

• REST management: BMCWeb Redfish, host 

management using REST APIs

• SSH-based SOL

• Remote KVM

• Virtual media, etc.

This section provides the implementation details of OpenBMC running 

on Wedge. As described earlier in Figure 1-26, BMC hardware is a reduced-

feature computer system; hence, OpenBMC is designed as a complete 

Linux distribution so that it can extend the support for other BMC vendor 

SoCs and boards. The OpenBMC project includes a bootloader as u-bootb, 

a Linux kernel with a minimal rootfs that contains all the tools and binaries 

needed to run OpenBMC, and board-specific packages:

• Both the bootloader and the Linux kernel include 

various SoC-specific firmware and hardware drivers 

like I2C, USB, PWM, and SPI drivers, etc.

• The open source packages include common 

applications such as busybox, i2c tools, openssh, 

and Python.

• The board-specific package includes initialization 

scripts and tools that are specific to a board. Examples 

are a tool that dumps inventory from the EEPROM and 

a fan-controller daemon to control the fan speed based 

on environment readings.
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Figure 1-33 illustrates the OpenBMC package running on the BMC 

inside the Wedge platform.

Figure 1-33. OpenBMC Stack on the Wedge platform
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All packages in OpenBMC are grouped into three layers, as 

shown here:

Common 
Layer

this layer includes packages that can be used across different SoCs 

and boards. For example:

common/recipes-rest

common/recipes-connectivity

common/recipes-utils

SoC Layer the SoC layer includes packages that are specific to BmC SoCs. 

Figure 1-29 shows the SoC layer is part of both the bootloader and 

linux driver as it implements a specific driver to communicate with the 

aspeed BmC chipset. For example:

meta-aspeed/recipes-bsp/u-boot

meta-aspeed/recipes-core

meta-aspeed/recipes-kernel/linux

Board 
Layer

the packages being included in this layer are specific for the current 

board. Figure 1-29 shows the configuration, initialization scripts, and 

tools that are specific for wedge. For example:

meta-aspeed/recipes-core

meta-aspeed/recipes-kernel

meta-aspeed/recipes-wedge

Generating an OpenBMC image for a specific board requires these 

three layers: the common layer, a SoC layer for the BMC SoC used in the 

board, and a board-specific layer for the targeted BMC board.

 u-bmc

u-bmc is a project that was developed almost at the same time as 

OpenBMC. u-bmc is a Linux OS distribution for the BMC that was 

developed using open source firmware. The goal of u-bmc is to ensure 

that critical and highly privileged code like the BMC is easy to audit 
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and adheres to modern security. u-bmc was written in Go and replaces 

the industry-standard IPMI with gRPC to reduce the attack surface and 

provide improved security.

u-bmc uses u-root as a framework to create a minimal Linux 

distribution that gets loaded after bare- minimal initialization by the BMC 

bootloader. Figure 1-34 shows the u-bmc boot flow where it loads the 

Linux kernel after the basic platform initialization as part of u-bmc.

Facts u-root incorporates four different projects as follows:

• go versions for standard linux tools, for example: ls, 
cp, etc.

• to compile many go programs into a single binary

• to create a go-based userland that works as initramfs 
for the linux kernel

• go bootloaders that use kexec to boot linux kernels
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Figure 1-34. u-bmc firmware boot flow

It’s possible to ship the entire server firmware development using open 

source firmware where the system firmware is developed using coreboot, 

and u-bmc can be used for the BMC to boot the Linux distribution.

 RunBMC

The benefit of open source is not only limited to firmware and software. 

Using open source projects has security advantages over closed source 

firmware software, where with more eyes and hands for review, testing 

and bug fixes provide improved code quality. Within Open Compute 
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Project (OCP), the community has started looking into designing open 

source hardware that provides more efficient, flexible, secure, and scalable 

design. RunBMC is an open source hardware specification that defines the 

interface between the BMC subsystem and OCP hardware platforms, such 

as network or computer motherboards. The BMC is built around a SoC that 

provides access to common functionality like RMII, and RGMII provides 

access to the Ethernet, PCIe, or LPC/eSPI interface to interact with the 

host system. Typically, the BMC chip is soldered onto the motherboard. 

The RunBMC design separates the BMC from the host motherboard by 

creating a RunBMC daughterboard card that interfaces with the host 

system through a 260-pin SODIMM DDR4 connector. Figure 1-35 shows 

an example of RunBMC daughterboard I/O connectivity. The RunBMC 

interface includes specifications such as RGMII, RMII, LPC/ESPI, PCIe, 

USB and various serial interfaces, and GPIOs for communication.

Figure 1-35. RunBMC daughterboard card block diagram

This design is more stable and secure because it modularizes the 

BMC subsystem, where the entire security effort is now shifted onto a 

single BMC card. It provides an opportunity to vendors for hardening the 
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hardware security independently by adding security features like Titan, 

Cerberus, or TPM chips into the daughter card to implement a hardware-

based root of trust. Also, a swappable BMC card is easy to replace if 

detected vulnerable or updated, without impacting the entire host system.

To summarize, out-of-band management for computing systems is 

an innovation that saves costs and minimizes the computer downtime on 

failure without physically visiting the data centers. But the availability of 

monitoring, accessing, and controlling the host system using BMC might 

increase the platform attack surface due to the closed source nature of 

BMC firmware and the higher privileged level that it operates. In the past, 

the security researchers have done ample studies to highlight the BMC 

vulnerabilities. The OpenBMC project sets the stage for BMC firmware 

and hardware development using an open source model. Having an open 

source hardware interface and BMC firmware developed with open source 

firmware provides visibility into the utmost privileged rings of the platform 

security, which was always closed otherwise.

 Zephyr OS: An Open Source Embedded Controller 
Firmware Development
This section provides a brief overview of the embedded controller (EC) 

that is often found in low-power embedded systems and is responsible 

for managing various tasks that the system firmware and an operating 

system can’t handle. It’s important to understand the EC hardware control 

block, its communication with the host system, etc. This knowledge is 

essential to establish the trust in the system boot process, as the firmware 

that is running as part of the EC is an independent entity in the computing 

system that is capable of accessing the platform components directly. 

The majority of EC projects are developed using proprietary code; 

hence, it’s important to have visibility into all firmware that is part of the 

computing system.
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 Embedded Controller

The embedded controller can refer to the heart of the client and IoT 

computing device. The EC is the first microcontroller unit (MCU) on 

an embedded system that receives power when the user presses the 

power button or any other possible source to power on the system. The 

EC is responsible for orchestrating the platform power sequencing in 

recommended order (as per the platform design guide) so that it can 

release the host CPU from reset. In addition, it does lots of other things.

• Battery charging: Tasks includes managing the battery 

charger and the battery, detecting the presence of AC, 

and reporting its change status.

• Thermal management: Tasks include measuring the 

temperature of board components (CPU, GPU, several 

sensors on board) and taking action to control the fan 

speeds, CPU throttling, or force power off based on 

critical sensor data.

• Keyboard: The EC is also referred to as the keyboard 

system controller (KSC), which takes care of receiving 

and processing signals from the keyboard.

• Hardware buttons and switches: Tasks include receiving 

and processing signals from hardware buttons (typically 

laptop/tablet button array) and switches (laptop lid).

• Backlight, LEDs: The EC implements the LED’s control 

indicators (RGB) for battery, power, AC, caps lock, num 

lock, scroll lock, sleep, etc. Also, it is able to control the 

display and keyboard backlight.

• Peripheral control: The EC is able to turn on and off 

several platform components like WiFi, Bluetooth, 

USB, etc.

Chapter 1  Spotlight on Future Firmware



104

• Debug interface: The EC controller provides a UART 

port for serial debug and a Port 80h BIOS debug port. 

These are primarily used for testing, debugging, and 

remote administration of the device.

The embedded controller is a separate chip that is soldered on the 

motherboard, which includes a low- power processor, memory (SRAM 

and ROM), several I/Os, and an interface with the host system through 

one of the common interfaces such as Low Pin Count (LPC), eSPI, and 

I2C. It’s being designed as a stand-alone microcontroller that can operate 

in low-power mode. The EC can access any register in the EC address 

space or host address space. The LPC/eSPI host controller can directly 

access peripheral registers in the host address space. Figure 1-36 shows 

a generic embedded controller block diagram. The embedded controller 

always remains on if the system has power attached. With the release of 

the internal reset signal that resets the processor in the EC control block, 

the processor will start executing code from the ROM. The boot code part 

of ROM executes a secure bootloader, which downloads user code from 

an external SPI Flash and stores it in the SRAM. After that, the boot code 

jumps into the user code and starts executing.

Facts there are two possible ways that define how the eC should 
access its user code from Spi Flash.

• Master attached flash sharing (MAFS): in this mode, the 
eC won’t have a dedicated Spi Flash; rather, it shares 
the Spi Flash with the host system pCh. eC will access 
Spi Flash over the eSpi flash sharing channel.

• Slave attached flash sharing (SAFS): the eC will have access 
to dedicated Spi Flash using the Spi interface, and pCh will 
access Spi Flash over the eSpi flash sharing channel.
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Figure 1-36. Generic embedded controller block diagram

After the user code starts executing, it configures the GPIOs as per 

the platform needs and initializes the host interface. The EC and host 

system can communicate with each other using EC HOST commands 

and trigger ACPI events for interrupting host system and memory-

mapped regions shared between EC and Host CPU address space. The 

following is an embedded controller firmware architecture overview so 

you can understand the internals of EC operations that help to perform 

independent tasks in a timely manner.
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 EC Firmware Architecture

Embedded controller firmware is responsible for performing the platform 

power sequencing and remains active all the time even when the 

platform control reaches the operating system. It needs to perform several 

independent tasks such as thermal monitoring, battery management, 

keyboard control, etc. This section will provide a high-level firmware 

architecture overview so you can understand the innards operations being 

managed by the EC.

Tasks

Most of the operations being performed by the embedded controller are 

in the context of a task. Since embedded controllers are not multicore, 

the scheduling of the tasks is done using some time slicing algorithm to 

achieve the multitask execution. Each task has its own fixed stack size 

assigned. There is no heap (malloc) to use, and all variable storage is 

explicitly declared at build time. Each task has its given priority, and it 

continues to run until it exits or a higher-priority task wakes up and takes 

control away from a lower-priority task. At a high level, it’s a loop that 

initiates all tasks unless there are wait eventsor a define sleep duration 

before resuming a task.

Callbacks

Callbacks allow you to register a function to get executed at a later point of 

time when a particular event occurs such as a callback to handle all button 

change events. Typically, these callbacks are registered by one module and 

invoked by different modules. If more than one callback needs to be run at 

the same time, then it’s getting called as per the priority order.
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GPIOs

The board-specific code inside the EC source is to configure the GPIOs 

to allow SoC power transition and system transitions. The GPIOs can be 

configured as inputs, outputs, and interrupts. Typically, these are getting 

configured as part of the board init() function or based on certain 

callbacks like power off() while the system is transiting its state. The 

interrupt handles part of each module to read the GPIO status prior to 

transferring the call into the handle functions.

Modules

Operations being managed by the embedded controller are grouped 

into modules, and each module is self- contained after the GPIOs are 

configured. This includes initialization sequence, state machines, 

and interrupt handlers. Examples of such modules are peripheral 

management, power sequencing, SMC host, battery management, thermal 

management, KBC host, etc.

Debugging

EC firmware provides a set of debug services such as serial console, 

exception handler, and port 80 display.

• Serial console: This is the traditional approach while 

developing or debugging EC firmware, where a serial 

console would be handy to indicate the problem. Also, 

some EC implementations use the static console buffer 

for ease of debugging, while the host reset doesn’t clear 

this buffer and persists across multiple reboots. An 

interactive EC console would help to run various key 

commands and system management independent of 

the host system.
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• Exception handler: If the EC firmware runs into an 

error, the easiest way to inform the user about the 

problem is by dumping the current operating stack. 

The exception handler contains some interesting 

information like the program counter (pc) and link 

register (lr), which indicates the code that the EC was 

running when the panic occurred.

• Port 80 display: Initialize the port 80 display and use 

this to indicate any error in the following format: ECxx, 

where xx refers to the specific error code.

Host CPU to EC Communication

The embedded controller provides a unique feature that allows you to 

perform complex low-level functions through a simple interface to the host 

CPU. The most commonly used embedded controllers include different 

communication channels that connect the embedded controller to the 

host CPU, allowing bidirectional communications. It helped to reduce the 

host processor latency in communicating with the embedded controller. 

There are different methods by which the host CPU communicates with 

the embedded controller.

• Host commands

• Embedded controller interface

• Shared memory map

Host Commands

The host CPU communicates with the EC by issuing host commands. 

These commands are identified by a command ID. When a host CPU is 

intended to issue a command (and data) to the EC, depending on the 

current operation phase (i.e., system firmware/BIOS or OS), it involves 

Chapter 1  Spotlight on Future Firmware



109

other software components. If system firmware is sending the host 

commands, it can directly send them to the EC, but from the OS layer, it 

first communicates via the EC kernel drivers, and then it receives the raw 

commands and sends them on the EC. The host packet is received by the 

EC board-specific code, which further sends the command to the common 

layer that runs the host command. While this is happening, the EC needs 

to indicate to the host that it is busy processing and not yet ready to give a 

response. If the host command expects a response, then the EC responds 

with the result and data to the host CPU. An example of a host command is 

to read the board ID by sending the SMCHOST_GET_FAB_ID command 0x0D 

to the EC.

Embedded Controller Interface

The Embedded Controller Interface connects embedded controllers to 

the host data bus, allowing bidirectional communications. The embedded 

controller is accessed at 0x62 and 0x66 in the host system I/O space. 

Port 0x62 is called a data register (EC_DATA) and allows bidirectional 

data transfers to and from the host and embedded controller. Port 0x66 

is called the command/status register (EC_SC); it returns port status 

information upon a read and generates a command sequence to the 

embedded controller upon a write. Figure 1-37 shows that this interface is 

implemented using the ACPI specification. The figure defines more than 

one type of communication using the host interface.

• The embedded controller command set allows 

operating system–directed configuration and Power 

Management (OSPM) to communicate with the 

EC. The ACPI defines the commands between 0x80 

and 0x84 to tell the EC to perform an operation. For 

example, the Read Embedded Controller (RD_EC) 

command 0x80 allows OSPM to read a byte in the 

address space of the embedded controller.
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• The host waits for the Input Buffer Full (IBF) flag on 

the EC_SC to be 0.

• The host writes the command byte to port 0x66 and 

the address byte to port 0x62.

• The EC generates SCIs in response to this 

transaction from the SMC ACPI handler.

• The SMC command handler passes control to the 

actual EC SoC code. To receive data from the EC, 

wait for Output Buffer Full (OBF) to be set, which 

indicates there is incoming data.

Figure 1-37. Embedded controller shared interface

• When the embedded control has detected a system 

event that must need to communicate to OSPM, it first 

sets the SCI_EVT flag in the EC_SC register, generates 

an SCI, and then waits for OSPM to send the Query 
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Embedded Controller (QR_EC) command 0x84. The 

OSPM driver detects the EC SCI when the SCI_EVT 

(SCI event is pending) flag in the EC_SC register is 

set and sends the QR_EC command. Upon receipt of 

the QR_EC command byte, the embedded controller 

places a notification byte value between 0x00 and 

0xFF, indicating the cause of the notification. OSPM 

driver query ACPI control method with that value in 

the form of _Qxx where xx is the number of the query 

acknowledged by the embedded controller. Here’s an 

example to explain the scenario better:

• A change in the LID switch status would trigger an 

GPE from the GPE bit (LAN_WAKE_N) tied to an 

embedded controller.

• The OSPM driver queries the EC to know the 

query number.

• The host system firmware has implemented a 

control method (_Qxx) corresponding to the 

OSPM query.

• The ACPI control method notifies OSPM that the 

LID switch status has changed to Notify (LID0, 

0x80); LID0 is ACPI device entry for LID.

• The OSPM driver further calls the LID ACPI 

device control method to read the LID switch 

status (LIDS).
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• LID switch status can be read using the EC ACPI 

command either through port 0x62/0x66 or 

through the LPC register.

• Upon reading from the EC, the ACPI control 

method passes the value to the OSPM driver, and 

the OS takes the necessary action.

Figure 1-38 describes this communication graphically.

Figure 1-38. Software implementation of the EC control interface

Shared Memory Map

Some systems have memory regions shared between the embedded 

controller and the host system address space. The size of this memory 

region is limited and treated as read-only (RO) on the host system 
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side. This memory is maintained by the EC to pass various interesting 

information such as battery status, thermal sensor data, battery 

information, fan speed, LID switch status, etc. A system that doesn’t 

support this shared memory needs to send host commands to read that 

information.

 Challenges with Closed Source EC Firmware

The firmware that is running as part of the embedded controller is working 

at a higher privileged level where unauthorized access won’t be detected 

by the security controller running as part of the system firmware or an 

OS. Also, if proprietary EC firmware code doesn’t implement Secure Boot 

or verified boot, then it’s allowed to run even unsigned and untrusted 

images. There have been several vulnerabilities being reported in the past 

where the EC can run unsigned firmware, and having a compromised EC 

firmware results in a denial-of-service (DoS) attack on the system. To bring 

more reliability and efficiency to computing systems and allow visibility 

into the most privileged code that is running prior to the host CPU reset, 

the industry is promoting an open source and collaborative embedded 

controller development using the Zephyr OS.

The next section will provide details about developing EC firmware 

using an open source advantage, but prior that, let’s understand the 

reference hardware design that enables independent EC development 

using a Modular Embedded Control Card (MECC).

 Modular Embedded Controller Card

Typically, the embedded controller chip is soldered onto the motherboard, 

and many system firmware updates also ensure the EC firmware is 

upgraded. If the platform has detected a bug in the EC firmware boot 

code and the system firmware doesn’t provide the provision to update the 

EC firmware, it’s impossible to replace the defective EC firmware as it’s 

integrated into the motherboard design. To mitigate this problem and have 
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an independent, modular EC firmware development that supports various 

EC SoC vendors, the MECC card was developed. The host system using 

open source EC firmware may take advantage of the MECC specification, 

where different EC SoC vendors can develop and validate their solution 

through an add-on card rather than creating multiple hardware designs 

with a dedicated on-board EC. Figure 1-39 shows the MECC card design 

and interfacing with the host system through the MECC connector. The 

MECC AIC board design is an independent solution that combines the 

processor, memory, ROM, and different I/Os as part of the MECC board, 

for example, serial port for debug, SPI Flash, keyboard connector, etc., and 

interfacing with the host system is through the MECC (AIC) connector 

using the LPC/eSPI interface. Hence, it’s easy to replace the AIC if broken; 

just upgrade the EC firmware using an external SPI programmer.

Figure 1-39. MECC AIC interfacing with the host system

Open source embedded controller firmware development using 

Zephyr-OS provides a scalable architecture that enables different MECC 

cards with different EC SoC vendors. The vendor added Hardware 
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Abstraction Layer (HAL) and EC SoC Board Support Package (BSP) 

support along with Zephyr RTOS.

 Zephyr-Based EC Firmware

The Zephyr OS is a small-footprint kernel that is designed for use on 

resource-constrained and embedded systems. The kernel has support for 

cross-architectures and is distributed under the Apache 2.0 license. Zephyr 

is an open source project managed by the Linux Foundation. Zephyr 

provides a huge set of features.

Threads: Typically, the operations performed by the embedded 

controllers are task based, and hence, migrating to Zephyr for embedded 

controller firmware development would be effective with scheduling 

algorithms provided by Zephyr for creating a multithreaded environment. 

The creation of a thread in Zephyr uses a statically defined approach using 

K_THREAD_DEFINE. The thread may be scheduled for immediate execution 

or a delayed start. Zephyr provides a comprehensive set of thread 

scheduling choices that use a time slicing algorithm to achieve a multitask 

environment.

• Cooperative time slicing: Each thread should 

intermediately release the CPU to permit the other 

threads also to execute. It can be achieved using 

predefined sleep between tasks or explicitly releasing 

the CPU.

• Preemptive time slicing: Use the Zephyr scheduler that 

allows other threads to get their chance for execution 

without causing a starvation.

The tasks performed by the embedded controller are non-time-critical 

tasks; hence, cooperative time slicing is more applicable where each task 

would sleep for some predefined amount of the time before becoming 

ready to perform the task again.
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Memory: Zephyr allows the static allocation of 

memory with a fixed-stack size. It implements 

memory protection and prevents the EC stack 

from getting overflowed, having access permission 

tracking for kernel objects and device drivers. 

Provides user-space support using MMU/MPU.  

A platform without MMU/MPU support combines 

BSP code with a custom kernel to create a 

monolithic image where both the BSP and the 

kernel code share the same address space.

Resource definition at compile time: Zephyr ensures 

all system resources are defined at compile time to 

reduce the code size and increase performance.

Security: A dedicated team is responsible for 

maintaining and improving the security. Also, 

having visibility via the open source development 

significantly increases the security.

Device tree: The device tree is used to describe the 

hardware. Information from the device tree is used 

to perform various device-related operations inside 

the BSP and/or application layer.

The embedded controller firmware development using ZephyrOS 

is a new and a growing area where the introduction and support of new 

protocols and peripherals help to go beyond the traditional I/Os from what 

is being available in stand-alone microcontroller units. Figure 1-40 shows 

the Zephyr-based EC firmware architecture diagram.
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Figure 1-40. Zephyr-based embedded firmware architecture diagram

The modular and configurable architecture of ZephyrOS-based 

embedded controller firmware development is hardware and vendor 

agnostic. It allows switching the underlying hardware abstraction layer 

(HAL) and drivers based on different EC SoCs, while the middleware and 

logic remains intact. To use a different MECC card with different EC SoC 

vendors, the developer needs to add its HAL and board support package 

(BSP) to the Zephyr EC firmware repository.
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The following table describes the components inside the EC firmware 

that are required while performing low-level operations:

Board Board-specific code and configuration details. this includes gpio 

map, battery parameters, routines to perform board-specific init.

SoC/vendor- 
specific HAL

mCu-specific code that deals with lower-level hardware like 

registers and hardware blocks.

Drivers lower-level drivers for uart, gpio, timer, i2C, etc. these drivers 

are using a device tree and vendor- specific hal to access the 

underlying embedded controller hardware block.

The ZephyrOS layer provides upper-level code that manages the 

thread, memory management, I/Os management, etc. This includes 

high-level drivers that publish Zephyr APIs to allow the host interface to 

access the embedded controller. The host interface defines the hardware 

link between the embedded controller and host system (PCH and CPU) to 

work on a computing system. This link can be between LPC or eSPI or I2C, 

which is the section that covers all the basic applications of EC firmware 

on an eSPI-enabled platform.

Power Sequencing

This section describes the application of embedded controller firmware 

that handles the platform power sequencing, and at the end of this flow, 

the host processor is able to come out from the reset. The embedded 

controller firmware follows the host system platform design guideline that 

specifies the power sequence and its timings. Any platform state transition 

has to pass through this module. These events that trigger platform state 

transitions can be power signals that either come from a host system like 

ACPI system transitions or are generated by board circuitry like the power 

button, AC supply, etc. Refer to the following table that demonstrates 

system transitioning from G3 to S0:
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System Transitions Between G3->S0

1. the power good (pwrgD) signal to the embedded controller hardware indicates 

when the main power rail voltage is on and stable. the processor part of the 

embedded controller will start executing code from the rom. the boot code is used 

to download code (user code) from an external flash via the shared flash interface. 

the downloaded code must configure the device’s pins according to the platform’s 

need. once the device is configured for operation, the user code must de-assert the 

system’s resume reset signal (rSmrSt#). any gpio may be selected for rSmrSt# 

function. the board designer needs to attach an external pull-down on the gpio 

pin being used for the rSmrSt# function; this will ensure that the rSmrSt# pin is 

asserted low by default.

2. perform a deep sleep exit handshake, where pCh sends the SuS_warn signal to 

the eC and the eC acknowledges by sending the SuS_aCK signal.

3. the eC indicates the pCh using the Batlow signal that there is a valid power 

source or enough battery capacity to power up the system.

4. Slp_Sx (where x is based on the supported sleep state of the host system) 

signals from pCh to the eC indicate that the host system is transiting from the sleep 

state as per the platform guide.

5. wait for all_SYS_pwrgD, the all-system power good (all_SYS_pwrgD) input 

generated from the board circuitry indicates to the eC that the SoC power rails are 

stable.

6. Based on this, the embedded controller will generate the pwroK signal.

7. pCh de-asserts pltrSt# after pwroK is stable. the pltrSt# is the main 

platform reset to other components.

8. the processor will begin fetching code from the Spi Flash via Spi interface.
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Figure 1-41 shows the graphical representation of the system state 

transition between the embedded controller and host system.

Figure 1-41. Power sequencing with Zephyr- based EC firmware

Peripheral Management

This section describes the embedded controller managing the human 

interface device, which mainly handles buttons and switches attached to 

the motherboard.

Button Array Devices

All sorts of buttons that are present on the motherboard and need human 

interaction are managed by the embedded controller. For example, the 

Power Button is the input to EC, which is default-driven high with a pull-up. 

This signal goes low upon pressing the power button and triggers an 

interrupt. Apart from that, Volume up/down buttons, Home button, etc., are 

also being managed by this module.

Switches

This module is also responsible for tracking the state of laptop lid switches 

and other modules like the screen rotation lock.

The main job of this module is to deal with the undesirable effect any 

mechanical button/switch has when it strikes together (either pressed and 
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released or open and closed), causing electrical rebound before settling 

down after the electrical transient time. Mechanical switch debouncing 

is implemented using cooperative threading to track the short and 

long presses of all buttons registered within the system. It also sends a 

notification to the host. Callbacks per button/switch are registered within 

the GPIO driver to track state transitions for button and switches. See 

Figure 1-42.

Figure 1-42. Peripheral management with Zephyr-based EC firmware

Facts the embedded controller can be used to detect the docking 
status of the platform, whether it is in a docking station or not. Based 
on this status, the eC can perform additional tasks such as switching 
the system power source to the dock, routing signals from onboard 
interfaces to the dock, and reporting the docking status to the 
operating system.
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System Management Controller

The section describes the role of the embedded controller as a system 

management controller, which is used to manage the following items.

Thermal Management

The EC uses the I2C/SMBUS interface to read the platform sensor data, 

and based on the criticality of the platform state, the EC may have PWM 

interfaces that can be used to control system fans.

Power Monitoring

The embedded controller ADC signal can be used to monitor the voltage, 

and based on the usage of the sense resistor, it can also monitor the 

current consumption of specific power rails. This information could be 

useful to monitor the battery charging and inform the user or system 

administrator about any potential problematic power supply condition or 

detection of a bad charger.

Battery Management

The EC can be used to control the charging of the battery, switch between 

the battery and AC adapter as the active power source, or monitor the 

various battery status metrics such as temperature, charging level and 

battery health, etc.

ACPI Host Interface

The earlier section about “Embedded Controller Interface” provided the 

required details to understand the host CPU and EC communication 

using the ACPI host interface. The EC is capable of providing an ACPI-

compliant operating system with status and notifications regarding power 

Chapter 1  Spotlight on Future Firmware



123

management events. Also, it is capable of generating wake events to bring 

the system out from the low-power states.

The SMC host module is implemented as a cooperative thread that 

registers multiple callbacks within different modules to track events in the 

system. See Figure 1-43.

Figure 1-43. SMC with Zephyr-based EC firmware

Keyboard Controller

Typically, the EC is also referred to as a keyboard system controller 

(KSC), as it allows AT-compatible and PS/2-compatible support for the 

keyboard and mice via reads/writes to I/O ports 0x60 and 0x64. The main 

responsibility of this module is to inform the CPU when a key is pressed or 

released. It also supports auxiliary devices such as a mouse. On modern 

computing systems, embedded controller chips have implemented 

support for 8,042 commands, which means the EC can receive 8,042 

commands from either the system firmware or the PS/2 operating system 

driver. Figure 1-44 shows the implementation aspect of an embedded 

controller kbchost application, where the EC firmware application can 

pass the received command from the operating system driver to the 

Zephyr PS/2 driver, which performs PS/2 communication with a mouse 
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and/or keyboard. Alternatively, the EC firmware can also receive the 

command and process it prior to sending a response to the OS driver. 

For example, kbchost gets the command 0xD4 (Send to Mouse) at KBC 

Command/Status Register 0x64 that indicates the destination device; then 

it sends a command 0xF4 (Enable) through the KBC Input/Output Buffer 

Register 0x60. When the host expects to receive any response, the data 

arrives through port 0x60.

Figure 1-44. KBC with Zephyr-based EC firmware

Keyboard Scan Matrix

All keyboards have their keys arranged into a matrix of rows and columns; 

this is known as the keyboard matrix. Because of the number of signals 

required to represent those rows and columns, the external keyboard uses 

an on- board keyboard controller (KSC). It continuously scans the state 

of the whole grid; a circuit in the grid is closed when a key is pressed, and 

this is eventually sensed by the firmware running in the EC. Once the row 

and column have been determined, the EC maps the grid coordinates to a 
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scan code, which is sent back to the EC firmware kbchost application and 

further sent the data to OS PS/2 driver as the eSPI message. Figure 1-45 

shows the implementation of the keyboard scan matrix as part of the 

Zephyr-based OS.

This implementation allowed ODM/OEMs to have specific hotkeys 

as part of the laptop keyboard layout, which is not supported by the 

international keyboard standard, for example: change screen brightness, 

enable/disable wireless networking, control audio volume, etc.

To summarize, the embedded controller is a special microcontroller 

that is part of the majority of mobile computing systems. The firmware 

that is running on the EC chip is operating at a much higher privilege level, 

which does various operations that are not possible to perform by even an 

operating system. This firmware started operating since platform power 

on and remains active even if the system is at a power-off state; hence, 

it’s important to ensure the visibility of operations that are running part 

Figure 1-45. Managing a KeyScan event with Zephyr-based EC 
firmware
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of the EC firmware. The EC firmware project is being developed with the 

open source Zephyr OS that has provided visibility into the EC firmware 

operations. The introduction of Zephyr OS makes EC development easy at 

the EC vendors and OEMs sides while supporting different EC SoC chips 

with the same host system using the MECC card.

 Summary
This chapter provided an opportunity to understand the different types 

of firmware that exist and execute on a computing system. Typically, they 

are categorized as system firmware, device firmware, and manageability 

firmware. All these types of firmware are running at a higher privilege level 

compared to the kernel. In this chapter, those privileged levels are being 

specified as “minus” rings since any vulnerability existing in these layers is 

tough for any high-level security controller to detect. Hence, this chapter 

highlighted the need for an open source approach while developing this 

firmware in the future. This would finally help to restore the trust in the 

platform and also would provide visibility into the most privileged level 

firmware, which was not done before.

This chapter proposed two working principles while developing system 

firmware in the future for embedded systems: hybrid system firmware, 

where a portion of silicon vendor code is binary and communication with 

open source firmware is using a standard specification-defined interface, 

and a true open source system firmware development on an open 

hardware specification using a modern system programming language 

such as Rust. Appendix A provides the reasoning behind migrating 

the system firmware using Rust, an open source system programming 

language.
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Additionally, this chapter specified the well-known mechanism for 

designing and developing the device firmware using closed source models 

like option ROM (OpROM). The legacy implementation of the OpROM 

might increase the platform attack surface. Hence, developing modern 

OpROM using the open source EDKII source code and toolchain helps to 

get the initial visibility into the device firmware space, but the ideal goal 

would be to use the open source firmware model even for developing the 

device-specific firmware.

The remote management for server platforms and enterprise systems 

demands out-of-band (OOB) access into the system using a special 

manageability controller to perform certain tasks when the host system is 

not available or demands any maintenance. The firmware that is running 

on these MCUs are at the highest privilege level in the ring and hence 

always pose the security risk if an intruder had access into the remote 

system. This chapter provided a brief overview of system architecture of 

the two widely used microcontrollers, BMC and EC, on the computing 

system. This will help developers perform a migration to open source 

firmware development for these manageability controllers in the future.

The goal of this chapter was to explain why firmware architecture is 

expected to evolve in the future, and it’s fairly possible that the majority of 

firmware development will migrate to open source. Hence, it’s important 

that developers understand the industry’s need and prepare themselves 

for the future.

Chapter 6 represented some innovation in system firmware design and 

development using an open source firmware approach that addresses the 

ongoing concerns with extensible firmware architecture that increases the 

firmware boundary and inherits responsibility while booting the platform.
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CHAPTER 2

Tools
“If the only tool you have is a hammer, it’s hard to eat 
spaghetti.”

—David Allen

Looking back at history, tools have been the impetus for the evolution 

of the human race. Starting from the Stone Age through the Iron 

Age and to the modern computing age, tools have eased the work 

that humans have to do. Having the right tools for developing a boot 

firmware product is absolutely necessary to ease the development 

effort as well, provide a flexible interface for configuration, and offer 

seamless upgradability. This chapter focuses on the details of the 

various types of tools that a system developer should be equipped with 

for creating their own boot firmware.

The system firmware development journey includes various tools 

from its creation until deployment, as shown in Figure 2-1. This book 

is committed to providing detailed knowledge about various tooling 

requirements for each phase to prepare developers to work with the 

prerequisite software development kits (SDKs).

Typically, to get started with firmware development, a developer has to 

be equipped with these tools:

• Integrated development environment: An integrated 

development environment (IDE) is software that helps 

developers ease their development process. It typically is a 
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source code editor that provides some basic functionality 

such as the ability to create new files, search files, replace 

a string in a file, and more. Based on developers’ needs, 

there are various types of IDEs available, from basic ones 

such as the vim editor to advanced IDEs such as Eclipse, 

for firmware development.

Figure 2-1. System firmware development model
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• Infrastructure tools: Chapter 3 provides ample details 

about the usage of infrastructure tools in system 

firmware development. Hence, this chapter will refrain 

from discussing the topic.

• Debugging tools: Refer to Chapter 4 for a detailed 

overview of the debug methodology and debug tools 

usage on cross-architecture platforms. That chapter 

highlights the different types of tools used in system 

firmware development.

• Build tools (compiler and stitching tools): Build tools 

are the first step toward creating a firmware image for 

embedded systems. This process involves taking source 

code as input and generating binary files as output. The 

next step combines all the binaries and produces the 

final firmware image. This process is highly dependent 

on the chip architecture, firmware architecture, and 

technology being used to create the system firmware.

• Configuration tools: Configurability is a fundamental 

right for system integrators and validation engineers 

working on an embedded system. Relying on the 

development engineers to alter the source code to 

allow configuration and re-generate firmware images 

is not a scaled solution. This approach is a bottleneck 

for innovation. For example, it limits the scope for 

performing boundary testing with a wide range of 

data inputs. Even not a sustained model when the 

goal is to enable more ODM/OEM platforms with 

reduced development cost. Configuration tools allow 

developers to generate firmware images based on 

SoC and board- level configuration changes without 

rebuilding the system firmware image.
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• Flashing tools: The most important step to bring an 

embedded system to life is programming the flash 

parts. The purpose of flashing tools is to ensure 

the firmware image is correctly burned into the 

embedded system boot devices. The flashing process 

and mechanisms vary a lot, based on the underlying 

hardware design, target operating system, firmware 

architecture, technology being used, etc. A flashing 

tool might have a different interface and mechanism 

to consider based on the product lifecycle. The tooling 

process is different on the development side, factory 

side, and end-user side. Another consideration is that 

some firmware updates are over the air (OTA), meaning 

accomplished via a network.

The purpose of this chapter is to limit the discussion to the three major 

tooling needs (build, configuration, and flashing tools) while creating 

the system firmware and focus on the tools architecture across different 

system firmwares.

 Build Tools
The most effective way to understand a system firmware architecture is 

by understanding its building blocks. Different firmware systems have 

much in common: they mostly use C, with some assembly, for example. 

The differentiating factors among these different system firmware are the 

underlying build tools.

This section provides a detailed overview of the build tools and 

processes of two popular system firmware products for embedded 

systems: EDKII and coreboot. Typically, at a high level, all system firmware 

packages consist of the same structures, as specified in Figure 2-2.

Chapter 2  tools



133

• Refer to the Open Source EDKII project GitHub 

repository:

• https://github.com/tianocore/edk2

• Refer to the open source coreboot project GitHub 

repository:

• https://github.com/coreboot/coreboot

The BaseTools or Util directory consists of build tool binaries, 

or source code that needs to be compiled, prior to starting to build 

the package. The package does not have a dependency on the build 

environment. The package might consist of two types of files.

• Source code files: Files get compiled to generate object 

files or binaries that need further processing.

• Flash layout files: Files are processed to combine 

various binaries to create the final firmware image.

The build process includes three main phases.

 1. Set up the environment.

 2. Build the package components.

 3. Package the components to create the final 

firmware image.
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Figure 2-2. High-level system firmware package structure

 EDKII Build Tools and Process
EDKII is an open source firmware development project utilizing the UEFI 

and PI specification. EDKII is intended to improve the build experience 

compared to its predecessor, the EDK platform. EDKII adopts modern, 

feature-rich tools like Python for building, providing flexibility for 

developers while choosing correct toolchains using intermediate text 

files and relying on the C source code to generate tool binaries. Figure 2-3 

describes the control flow of an EDKII build.
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Figure 2-3. EDKII build tools and build process at a high level
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Prior to discussing the build process and understanding how 

the underlying build tools are getting used, let’s first understand the 

prerequisites to initiate the build process.

 Build Environment Setup

Several build environments must be prepared prior to development for 

EKDII. Some of these tools are dependent on host machines and host 

operating systems.

Operating Systems Compiler Tool Chains

Microsoft Windows Visual studio C compiler and Windows Driver Kit (WDK)

linux Native GCC Installation 4.4 onward

Some other build tools may also be required, depending on the source 

package, as part of system firmware development needs, in addition to the 

previous list.

Additional Compilers Details

Nasm Nasm is required for the eDKII build if the source package 

has Intel- style assembly code.

iasl this is needed to compile aCpI source language (asl) 

and generate .aml files.

python eDKII has adopted python for several build-related tools; 

hence, developers are expected to install python to 

run python-based tools from source. examples: Build, 

GenFds, trim, etc.
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The EDKII prebuild phase ensures that the required basic 

environment variables are set, by executing script files named edksetup.

bat or edksetup.sh, depending on the host system. Here is a list of 

environmental variables that the EDKII build process depends on:

Environment Variables Description

WORKSPACE the first variable to be set is WORKSPACE. this variable 

points to the root directory of an eDKII directory tree. 

More than one development tree can exist, and this 

environment variable is used to identify the current 

working directory tree.

PACKAGES_PATH this variable points out all possible required 

repositories for building the target project. For example, 

for building MinPlatformPkg, the developer needs to 

point to these three repositories:

• Edk2

• Edk2Platforms/Platform/Intel

• Edk2Platforms/Silicon/Intel

EDK_TOOLS_PATH this points to the BaseTools directory belonging to 

the eDKII package. It contains binaries as mentioned in 

the EDK_TOOLS_BIN environment variable.

EDK_TOOLS_BIN this is the path to point out build tool binaries. this 

depends on the operating system.

CONF_PATH this is the variable to point out tool metadata files.

The CONF_PATH environment variable is used to point at the 

configuration files. The configuration file tools_def.txt is used to provide 

compiler path information, assembler information, linker information, 

etc., while another file, target.txt, is used to describe the build process.
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ACTIVE_PLATFORM path to the .dsc file that represents the target embedded 

system

TARGET Characteristics of system firmware like DEBUG or RELEASE

TARGET_ARCH Underlying soC or CpU architecture of target hardware

TOOL_CHAIN_TAG to specify the compiler name example: GCC5 or Vs2015x86

BUILD_RULE_CONF path to the build rule file (build_rule.txt) that specifies 

the build process, usage of build tools based input and output 

file types and specifies the type of cross-architecture platform.

At this stage, the EDKII prebuild is done with all prerequisites except 

the build tools, which is required to start the build process.

 Build Binaries

The EDKII package consists of both the package source code and tools 

source code, separately. EDKII has introduced two sets of tools source 

code, as shown in the following tree structure:

|-- BaseTools

|   |-- Bin

|   |-- gcc

|   |-- Scripts

|   |-- Source

|   |   |-- C

|   |   |   |-- EfiRom

|   |   |   |-- GenFfs

|   |   |   |-- GenFv

|   |   |   |-- GenFw

|   |   |   |-- GenSec

|   |   |   |-- GenVtf

|   |   |   |-- Makefiles

Chapter 2  tools



139

|   |   |   |-- Split

|   |   |   |-- TianoCompress

|   |   |   |-- VfrCompile

|   |   |   `-- VolInfo

|   |   `-- Python

|   |       |-- AutoGen

|   |       |-- build

|   |       |-- GenFds

|   |       |-- Trim

|-- Conf

|-- CryptoPkg

|-- EdkSetupFsp.sh

|-- IntelFsp2Pkg

|-- MdeModulePkg

|-- MdePkg

|-- PcAtChipsetPkg

`-- UefiCpuPkg

Developers to build the BaseTools directory at least once to create 

build tool executables and update EDK_TOOLS_BIN before compiling the 

target platform package (.dsc) to generate the final Flash Descriptor 

(FD) file.

Depending on the host machine, perform the following command to 

generate executable Build Tools:

For Windows: nmake all

For Linux: make -C Edk2/BaseTools

All the required utilities will be copied into the path specified by 

the EDK_TOOLS_BIN environment variable. This is a manual process 

and expected to execute once, unless the developer cleans the entire 

workspace.

The build_rule.txt file is intended to provide detailed input and the 

expected outcome from each build tool taking part in the build process.

Chapter 2  tools



140

Let’s look at a few widely used build tools in detail and their usage 

prior to discussing the build process.

Utilities Description

build.py the main interface to complete the entire build process. this tool 

is written in python. the build calls the autoGen process; then it 

calls make process, and finally the ImageGen process to create 

the final FD binary.

AutoGen.py another key tool in the build process; this gets called by the build 

command. this tool is written in python to work as a parsing tool 

to parse metadata files (INF, DsC, DeC, FDF) to autogenerate C 

source code files, makefiles per module, and the master makefile 

for the project with the help of other sets of libraries such as the 

following:

GenC Library: Used by AutoGen.py to create AutoGen.h and 

AutoGen.c after parsing the metadata files to resolve pCDs, 

GUIDs, etc.

GenMake Library: Used to create a makefile for each module 

and the top-level makefiles that can be further processed by 

nmake or gmake or cmake

GenFw.exe part of the C source code tool. responsible for creating UeFI 

Firmware Image (.efi) files based on the module types listed in 

the INF files as part of each module.

GenSec.exe Used to generate a valid EFI_SECTION type based on INF files. 

For example, as part of the .efi binary, each module also has 

several sections such as name sections, GUIDed sections, version 

sections, etc., based on associated fields in the INF file.

(continued)
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Utilities Description

GenFfs.exe part of ImageGen process to create FFs files based on FDF to 

take part into firmware volume (FV). one can make use of the 

GenFds tool as well to create the FFs file.

GenFds.py to process the files generated as part of the build binary and 

associated binary files that are listed in the FDF and DsC files to 

be part of the final Flash Device (FD) image.

In addition to the previous list, there are other useful utilities that are 

used for some specific purposes such as compression, generating an EFI 

option ROM image from the .efi file, creating a configuration file and/or 

patching a binary module, and creating an FD image.

 Build Process

Figure 2-3 already provided the high-level build process flow for the EDKII 

platform, where a build command has triggered the build process. The 

entire build process can be divided into three major stages.

• AutoGen process

• Make process

• ImageGen process

Every build process listed here involves certain build tools (described 

in earlier sections), driven by a fixed set of input files, that generate output 

files, which are used as input to the next build process. This process 

continues until a final firmware file (a so-called FD file) is generated.
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AutoGen Process

This process was introduced in the EDKII build infrastructure. The 

major drawback that EDK had was each module needed to create its 

own makefile (similar to the C programming logic) to link the required 

libraries, GUID, etc., prior to compiling a module. It is difficult for a new 

developer who is transitioning into an EDK-based framework for firmware 

development.

EDKII has introduced this concept of AutoGen to parse the metadata 

files as part of the target package and/or individual module to generate 

some C source code files, the makefiles for each module, and even the 

master makefile for the target project.

Parsing Tools: This process has involved more than one tool and 

associated libraries. All tools that are part of this build process are written 

in Python. Refer to the build tools discussion for more details.

• AutoGen.py: This tool is used to parse the metadata 

files with the help of another two libraries, GenC and 

GenMake, to create AutoGen.c, AutoGen.h, and other 

makefiles.

Input Files: At a high level, the parsing tools takes the following files 

as input:

File Name Description

.dsc platform Description each package has one DsC file to describe the 

build rules, libraries, and components (INF) being 

used.

a platform build process starts with this file.

.dec package Declaration Declares the interfaces that are being used in that 

package.
(continued)
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File Name Description

.inf Module Definition each module has one INF file to define the 

interface, source code, libraries, usage of GUID, 

etc.

.fdf Flash Description File File in each package that provides the flash 

layout and associated firmware volumes. each 

component that is described in this file will take 

part in final binary creation.

Output Files: As mentioned earlier, the purpose of the parsing tool is 

to ease the development effort; hence, the output binaries that are part of 

this process are as follows:

• Top-level makefile: This is the makefile for the entire 

package that resolves all libraries, GUIDs, and any 

global definitions as part of the package.

• Makefiles per module: A C-based module can’t really 

compile without having a dedicated makefile. The 

parsing tool will generate a makefile for each module 

based on the INF file, after resolving the required 

dependencies using other packages.

• Autogenerated C source code: The source code as 

mentioned in the INF files is mostly written in C, where 

it relies on C-based data structures. With the metadata- 

based implementation in EDKII, it needs a parser to 

create an autogenerated AutoGen.h or .AutoGen.C file 

based on the need to provide macro definitions and 

resolve external symbols for the next build process 

(which is the make process).
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Make Process

The make process is not exceptional from any standard C-based 

compilation process to generate binary files that are further processed 

by special build tools to create EFI firmware image type files. Figure 2-4 

describes the make process control flow:

Build binary: This process involves standard 

C-compilers, assemblers, static linkers, and dynamic 

linkers to generate PE/PE32+/COFF images from 

component or module types listed in the INF files. 

Additionally, the GenFw tool is used to generate EFI 

firmware image files.
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Figure 2-4. High-level make process structure
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Input files: The make process takes two types of files 

as inputs. The source code belongs to the target 

and associated packages (C source, headers, ASM 

source and includes, ACPI and ASL files, etc.) and 

the autogenerated C source code headers and 

makefiles.

Output files: The purpose of the make process is to 

generate EFI file images that can be further used 

during the ImageGen process. But based on the 

input files, it can also generate .acpi, .aml, and 

.bin binaries. Figure 2-4 has provided a detailed 

control flow for generating EFI files based on 

input C source code. This process involves several 

intermediate steps, as shown here:

 1. The standard C-based compiler has compiled 

the source code to generate .obj files.

 2. .obj files have been given as input to the static 

linker to generate static library files (.lib), 

which further process into dynamic library files 

(.dll) with the help of a dynamic linker.

 3. Finally, the GenFw tool as part of the $(make) 

phase converts the .dll into an EFI_SECTION 

type. The EFI file format is compatible with the 

PE32/PE32+/COFF format.

ImageGen Process

This phase is responsible for taking the EFI format files generated as part of 

the make process and parsing the package metadata files to verify whether 

all those EFI file types are intended to be part of the final flash image.  
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This process can also take binary files as input, which is not part of the target 

DSC file or not the outcome of the build process while creating the final 

firmware image. Figure 2-5 describes the ImageGen process control flow.

Figure 2-5. High-level ImageGen structure

Build binary: Once the EFI section files have been 

created in the previous step, they need to be placed 

within an FFS file. GenFfs is the build tool that 

generates FFS files after combining those EFI_

SECTION type binaries with the FFS header. GenFds 

is used to construct the final firmware binary.

In addition, there might be a few modules and 

components that are part of the DSC files that are 

not meant to be part of a final firmware binary like 

Option ROM (OpROM). The EfiRom tool builds an 

option ROM image from an EFI file.
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Input files: At this stage, all components or modules 

that are part of the target platform package DSC file 

are now converted into build binaries. Out of those 

build binaries, module types with UEFI applications 

and OpROM are excluded from being part of the 

final Flash Descriptor (FD) creation process. This 

final build process depends on the FDF file to create 

the flash layout.

Output files: The FDF file section provides an 

overview of generating one or more firmware 

volumes (FVs). The FV section describes how to 

combine FFS files to create FV files. Multiple FV 

files are combined to create the final firmware 

image as a flash device (FD). FD tokens provide the 

BaseAddress, Size, ErasePolarity, BlockSize, and 

NumBlocks fields.

BaseAddress $(FLASH_BASE) | gSiPkgTokenSpaceGuid.

PcdBiosAreaBaseAddress

Size $(FLASH_SIZE) | gSiPkgTokenSpaceGuid.

PcdBiosSize

ErasePolarity 1

BlockSize $(FLASH_BLOCK_SIZE)

NumBlocks $(FLASH_NUM_BLOCKS)

At the end of this phase, the final firmware binary at a size of 

$(FLASH_SIZE) is ready to use the EDKII framework to flash on the target 

embedded system.
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This section provided an overview of the build system for an EDKII- 

based system firmware development. The next section will focus on 

the build tool and its creation process using another system firmware 

architecture, known as coreboot.

 coreboot Build Tools and Process
coreboot was developed based on the open source firmware development 

principle that relies more on C-standard build tools and build 

environments to generate the final firmware binary. This process doesn’t 

require high-level build tools and is much simpler compared to the EDKII 

build process described in earlier sections. Figure 2-6 shows the coreboot 

high-level build process.
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Figure 2-6. High-level coreboot build tools and build process
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For a better understanding and to be able to compare the build process 

with EDKII, this section presents the coreboot build flow almost in the 

same manner as was presented in the previous section.

 Build Environment Setup

This section provides the prerequisites to download the coreboot source 

code, which includes both the package source code and the source code 

for build tools. Additionally, it provides details about the compiler based 

on the host systems and environment variables that are expected to be set 

based on the target embedded system architecture.

The coreboot build process is based on GNU make; hence, developers 

need to have a Linux and UNIX-equivalent operating system on the host 

side with native GCC installed. GCC is the compiler for building coreboot 

(alternatively, one can also use LLVM/clang to build coreboot).

Some other build tools may also be required depending on the source 

package as part of the system firmware development needs in addition to 

the previous list:

Additional Compilers Details

iasl this compiles aCpI source language (asl) and generate 

.aml files.

Flex the GNU flex tool is used to parse the device tree field as 

it works as a lexical parser.

Bison the GNU bison tool works as a grammar parser for device 

tree files.

The coreboot prebuild phase is to ensure that all associated coreboot 

project-related files are also getting synced from their respective 

repositories prior to building the target project or mainboard. These 

associated projects are maintained separately as part of Git submodules 
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and checked out automatically after fresh coreboot code sync using git 

submodule update --init --checkout. The reason for maintaining these 

submodules separately is because they might be additional firmware 

projects by themselves like vboot or might be some SoC-specific closed 

source binary blobs like FSP, CSE, or PSP, etc., used to generate the final 

firmware binary.

The prebuild phase also sets up the required basic environment 

variables.

Here is a list of environmental variables that the coreboot build process 

is dependent on:

Environment Variables Description

FIRMWARE_ARCH this variable points to the target hardware 

architecture for which these files are getting 

compiled. Values can be used as x86, arm, etc.

KCONFIG_CONFIG this variable points to the input config file. typically, 

this is referred to as $(DOTCONFIG).

KCONFIG_STRICT the value assigned to this variable is build/util/

kconfig/conf --oldconfig src/Kconfig.

Define to enable warning as errors.

KCONFIG_AUTOHEADER this variable points to the path and filename of the 

auto.conf file.

The tool chain configuration file (toolchain.inc) is meant to provide 

paths for compiler, assembler, and linkers based on the target hardware 

architecture.

At this stage, the coreboot prebuild has been done with all 

prerequisites except the build tools, which are required to start the build 

process.
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 Build Binaries

The coreboot package consists of both source code and tools source code 

separately, as shown in the following tree structure:

|-- 3rdparty

|-- configs

|-- Documentation

|-- payloads

|-- src

|-- util

|   |-- abuild

|   |-- acpi

|   |-- amdfwtool

|   |-- amdtools

|   |-- apcb

|   |-- cbfstool

|   |-- cbmem

|   |-- crossgcc

|   |-- futility

|   |-- ifdtool

|   |-- kconfig

|   |-- sconfig

To start the final firmware binary generation process based on the 

target hardware, coreboot needs to build the cross-compiler, such as x86, 

arm, risc v, etc. For coreboot, the entire build process is designed based on 

GNU make; hence, running a make help command would list the possible 

tool chain options.

To build the coreboot for all supported architectures, developers can 

use the following command:

make crossgcc CPUS=n [n = number of CPU cores to use.]
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Additionally, developers need to build other tools as per package 

source support or build flow needs.

Let’s understand a few widely used build tools/utilities in detail and 

their usage prior to discussing the build process.

Kconfig

Kconfig is a widely used tool in Linux kernel projects to allow configuration 

mechanisms by selecting the required modules based on developer 

input. Similar to a coreboot project, Kconfig is used to allow developers to 

select the SoC feature or platform feature to create an autogenerated file 

that can be given to the make process for further processing. The Kconfig 

utility in coreboot gets built from the source code in util/kconfig. 

The Kconfig language is designed to describe a series of menu entries, 

and each Kconfig line starts with keywords like config, menuconfig, 

choice/endchoice, menu/endmenu, if/endif, etc. All Kconfig symbols in 

the coreboot project are referred to with the CONFIG_ prefix. Because of this 

advantage, the Kconfig language can be used easily to enable or disable 

any feature at build time. While building the coreboot project, developers 

are mostly familiar with the following modes to use Kconfig:

• config: Text mode configuration; asks developer about 

each configuration option

• menuconfig: Menu-driven configuration tool (added 

from Linux 2.5.45) still in Text mode

Output: After parsing all the source files, the Kconfig tool generates 

a HEADER file with a list of values inside build/auto.conf, which will be 

further used by the source code and makefiles of the project.
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Sconfig

The coreboot device tree is one of the most important concepts in the 

coreboot project. The device tree is designed to represent the platform 

hardware device structure in the form of a device node that can be the 

bridge, the underlying bus architecture, and then finally the endpoint 

device. Sconfig is the tool that is used to compile the device tree files in a 

coreboot project to generate the static device configuration. The Sconfig 

utility is built from the source code inside util/sconfig. The Sconfig tool 

is internally using the Lex and Yacc tools to parse device tree files to create 

C source code, which can be further used by C-based compilers.

• Lex: The GNU flex tool is used as a lexical analysis tool 

that can parse the .cb file to identify specific text strings 

such as chip, register, device, pci, on, off, domain, 

cpu_cluster, irq, etc.

• Yacc: This is a grammar parser. The GNU bison tool is 

used to provide this functionality. The output of the 

flex tool is used as input for this tool to understand 

what action to take when a token is being identified. 

Examples: for Interrupts INT[A-D], for decimals [0-9.]+, 

for hexadecimal 0x[0-9 a-f A-F.]+, etc.

Output: The main goal of Sconfig is to convert the mainboard (and 

SoC if any) device tree files to create static C source and header files. It 

takes a few steps to generate desired output files.

 1. util/sconfig/lex.yy.c_shipped is converted to 

lex.yy.c as a source file.

 2. YACC takes lex.yy.c as input and creates the 

sconfig.tab.c and sconfig.tab.h files that 

contain the macros for the tokens.
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 3. The Sconfig utility is generated from the combined 

output from lex and YACC.

 4. Finally, the Sconfig utility is used to generate 

static.c, static.h, and static_fw_config.h files.

cbfstool

cbfstool is a utility for managing the coreboot file system (CBFS) 

components during the final firmware image (ROM) generation process. 

The basic operations that cbfstool supports are add and remove modules 

into or from ROM images. For the platform using SPINOR as a boot device, 

one also needs to be aware that SPINOR memory is getting mapped into 

system runtime memory. Module relocation is not an option for early 

coreboot modules or .elf binaries in absence of physical memory at 

reset on x86 platforms. Thus, cbfstool needs to take care of two types of 

modules.

• eXecute-In-Place (XIP): cbfs components marked  

as --xip will execute from the address where they’ve 

been mapped in SPINOR. Examples: verstage, FSP-M 

binary. To support XIP components with a higher 

SPINOR (32MB), cbfs has introduced concepts called 

extended window and extended window size that are 

mapped anywhere outside (4GB to 16MB) the system 

memory range.

• Position-independent modules: Modules can be 

relocated anywhere in physical memory after it’s being 

available. The raw binaries like data or configuration 

files also belong to this category.
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There could be more than one cbfs inside the coreboot final binary 

based on project design. For example, on Chrome OS projects there are 

three CBFSs per image: COREBOOT, FW_MAIN_A, and FW_MAIN_B.

cbfstool is built using the coreboot source code inside util/cbfstool. 

Inside the cbfstool directory there is source code to create other binaries as 

follows:

fmaptool: This is the Flashmap Descriptor language 

and compiler. It’s a tool that is able to parse the 

textual representation of an .fmd file and describe 

the layout of the flash chips that might contain more 

than one CBFS. This tool creates an intermediate file 

called fmap_config.h with the start and size of each 

component that would like to be part of fmap blobs. 

The final output of this tool is fmap.fmap.

rmodtool: This is another tool that is part of cbfstool, 

which is intended to parse and convert ELF type 

files to rmodules. For .elf files as part of the 

coreboot project, those that are supposed to get 

executed after the physical memory is initialized 

and not using SPI mapped memory, they are using 

rmodtool to generate position-independent code 

and data blocks.
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In addition to the generic build tools, there are few important SoC 

vendor-specific tools that are used to generate the final firmware binary or 

perform key platform initialization or reset operation as follows:

Utility Description

ifdtool Intel Flash Descriptor (IFD), an open source tool that is used on 

the Intel platform to stitch boot-critical binaries (referred to as 

SI_ALL in .fmd) like Intel Me, Gbe, eC, and Flash Descriptor 

along with coreboot BIos region, referred as SI_BIOS in the 

.fmd file. Developers can use this tool to override the Flash 

Descriptor fields as well as part of the manufacturing flow.

apcb aMD platform security processor (psp) Control Block tools. 

this tool is capable of patching an existing apCB binary into 

the psp blob. a part of this tool (apcb_edit.py) is allowed to 

patch the aMD psp Customization Block (apCB). a binary has 

been integrated into the psp to provide the spD information 

and perform the required GpIo programming to select and load 

the right spD.

amdfwtool this tool is used to inject various images needed by the psp to 

complete the reset flow. this tool takes image name, size, and 

intended location in the firmware structure. the output of this 

tool is amdfw.rom, which holds headers, pointers, and added 

firmware images.

amdcompress a utility to generate a compressed BIos image for aMD Family 

17h. this compressed image is added into psp’s amdfw.

rom binary. the modern aMD system has the psp, which is 

able to bring up DraM prior to x86 reset; hence, the psp 

decompresses (the psp has support for zlib engine) the BIos 

image into the DraM and starts execution.
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 Build Process

Figure 2-6 has already provided the high-level build process flow for the 

coreboot platform where the GNU make command has initiated the build 

process. From opening up the terminal on the host system until the final 

firmware (.ROM) file generation process, the entire build process can be 

divided into three major stages.

• AutoGen process

• Make process

• ImageGen process

Every build process listed here involves picking up the correct build 

tools (described in earlier sections) and having a fixed set of input files, 

and the target is to generate the output files that can be further worked 

as input for the next builder script. This process continues unless a final 

firmware file is generated.

AutoGen Process

This process involves parsing the Kconfig source language files (.kconfig) 

and package device tree files (.cb) for generating two types of files.

• Autogenerated C header that holds the value of lists of 

Kconfig being used on the project package (CONFIG_*). 

The auto.conf header file is the outcome of parsing the 

Kconfig file by the Kconfig build tool.

• Static C source and header files are being generated 

as part of this process by the Sconfig tool. These files 

are getting used further to provide the hardware 

configuration snapshot to the system firmware 

during boot.
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File Name Description

*.CB Device tree 

Files

each package should have at least one devicetree.

cb file, which allows for the board-level configuration 

along with providing the snapshot of the CpU and pCI bus 

endpoint devices. at runtime this snapshot is being used to 

enable/disable the hardware interface or initialize a device.

Make Process

The top-level makefile for the project and all the package makefiles 

are used in the make process. The input for the make process includes 

autogenerated C source and headers from the previous stage; coreboot 

provides assembly and C source code per stage such as bootblock, 

romstage, postcar, ramstage, and SMM. The coreboot build process is 

flexible enough to make any boot stage optional. For example, if the 

system firmware design doesn’t need to have a dedicated ramstage as 

a stage for loading the payload, then coreboot can generate the final 

ROM image without compiling files for ramstage. These coreboot stages 

are independent enough in this build process to generate the ELF 

file after using the FIRMWARE_ARCH-specific compiler, assemblers, and 

linkers.

On the x86 platform where SPINOR is being used as a boot device 

and in absence of physical memory, it needs to ensure that the bootblock 

is able to patch at the reset-vector where coreboot is able to execute the 

bootblock instruction upon hitting CPU reset. In addition, there are a few 

stages (.ELF) that would like to load as a position-independent binary; 

hence, there is a need to use rmodtool to generate a special .rmod binary 

for stages that are typically getting executed after DRAM is initialized.
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ACPI modules are also getting compiled using the iASL compiler and 

generated in this process. The fmap tool is used in this process to parse the 

FMD file to create a flash descriptor file with the names of possible CBFSs.

File Name Description

.fmd Flashmap File each board package is equipped with one .fmd file to 

provide the description about flash layout. this .fmd file 

might consist of more than one region (SI_ME, SI_EC, 

etc.) in addition to the BIos region, specified as SI_BIOS. 

Based on the project requirement, this FMD file might 

have more than one CBFs as well.

ImageGen Process

This phase is responsible for creating the final firmware image (ROM) after 

adding all those build binaries from the previous stage into the CBFS.

This process basically divided into two phases:

• Create CBFSs: The coreboot build process relies on the 

cbfstool build to add the .elf and .bin binaries into 

sections into cbfs as per the following example where 

different coreboot stages and raw binary is getting 

injected to create the final ROM image:

printf "    CBFS       fallback/romstage\n"

CBFS       fallback/romstage

build/util/cbfstool/cbfstool build/coreboot.pre.

tmp add-stage -f build/cbfs/fallback/romstage.elf -n 

fallback/romstage  -c none  -r COREBOOT -a 64 -S ".car.

data" --xip

printf "    CBFS       fallback/ramstage\n"

CBFS       fallback/ramstage
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build/util/cbfstool/cbfstool build/coreboot.pre.

tmp add-stage -f build/cbfs/fallback/ramstage.elf -n 

fallback/ramstage  -c LZMA  -r COREBOOT

printf "    CBFS       fallback/dsdt.aml\n"

CBFS       fallback/dsdt.aml

build/util/cbfstool/cbfstool build/coreboot.pre.tmp  

add -f build/dsdt.aml -n fallback/dsdt.aml -t  

raw -c none  -r COREBOOT

• Add SoC/CPU vendor-specific binary: This process 

involves using vendor-specific binaries and tools to 

inject into coreboot.rom to call it the final firmware 

binary. For example, on the Intel platform, ifdtool is 

used to inject a descriptor, ME and EC, whereas on the 

AMD platform, an additional step has to be performed 

to compress the bootblock (using amdcompress) and 

create the build binary (amdfw.rom using amdfwtool) 

into PSP; it can then be added directly into the 

coreboot image.

At the end of this phase, the final firmware binary (ROM) at a size of 

CONFIG_ROM_SIZE is ready using the coreboot open source firmware model 

to flash on the target embedded system.

 Configuration Tools
The configuration tools are intended to allow changes in the final firmware 

image without going through the entire build process. The scope of 

configuration can vary between static and dynamic based on the system 

where this tool is running. For example, a tool can be running as part of the 

host system. Taking a final firmware binary (FD or ROM) as input to modify 

its default configuration value is known as static configuration. Or, if during 
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the runtime execution on the target hardware a native configuration 

interface allows modification of the configuration database, this is called a 

dynamic configuration tool.

In this section, we will discuss a few widely used tools in the scope of 

different system firmware architectures like coreboot, EDKII, and Slimboot 

that are allowed to modify the configuration database.

 Human Interface Infrastructure
Legacy system firmware was lagging in terms of allowing a unified 

approach to configure the underlying hardware with different hardware 

vendors providing their own configuration tools and access mechanisms. 

This made it harder for system integrators to design a robust interface for 

end users and various other users of system firmware.

On the UEFI platform, the Human Interface Infrastructure (HII) is used 

to provide a flexible and standard way to configure the target hardware. 

HII allows the platform configuration to access the hardware interface 

and store the data using the form browser. The form browser is like a web 

page that uses display and input devices for configuration to take place. 

Figure 2-7 shows the high-level operational model of HII.

HII is designed to create the platform configuration in the form of a 

data structure that needs localized text and a GUI to interface with the 

user. It needs six types of components to allow platform configuration 

using HII.

• HID devices: Input devices are used for configuration 

in the form of localization. HII supports localization, a 

process that helps a product adapt to the local market. 

HII supports keyboard mapping to allow users to 

choose their own language as input.
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Figure 2-7. High-level operational model of HII

• Display devices: The output devices support the 

localization. HII supports Unicode characters, which 

allows it to support all possible languages to display as 

part of the form.

• HII database: The HII database is created dynamically 

as the system boots. The UEFI driver is required to 

register a list of HII packages into the HI database. The 

package list provides different types of binary data. The 

data types could be font, string, image, keyboard layout, 

form, etc.

• Driver: The UEFI driver provides the Config Routing 

Protocol as ExtractConfig, RouteConfig, and Callback to 

retrieve and save configuration information associated 

with HII forms.
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• NV Storage: The NV Storage is to store any data which 

remains persistent even after the system is resuming 

from the mechanical off state. The NVRAM is getting 

used as the NV storage. The HII form retrieves the 

configuration data from NV Storage and allows 

modification of these parameters from the available 

configuration list. The EFI variable services protocol is 

used to access the NV Storage.

• Forms Browser: This is a GUI to represent the HII and 

allow users to configure the options. HII has its own 

standard architecture and language as IFR and VFR to 

present the browser with the help of a Unicode string.

• IFR : Internal Forms Representation is the 

architectural binary encoding used to present the 

user interface pages. The Vfr compiler takes VFR 

files as input and generates output IFR files.

• VFR: Visual Forms Representation is the source 

code language that is used by developers to design 

a form page.

The following table provides a conversion from VFR to IFR for 

developers’ understanding:
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VFR IFR

form formid = 1,

  title = STRING_TOKEN(

                STR_FORM1_TITLE

            ),

typedef struct _EFI_IFR_FORM {

EFI_IFR_OP_HEADER  Header;

UINT16                 FormId;

EFI_STRING_ID      FormTitle;

} EFI_IFR_FORM;

Figure 2-8 represents a UEFI browser setup page created using HII.

Figure 2-8. EDKII setup browser using HII

 YAML-Based Configuration
YAML-based configuration is part of Slim Bootloader (SBL) configuration 

process to provide a simple and flexible method to modify the board- 

specific parameter to support new boards. SBL provides configuration 

parameters that are getting used for platform initialization and are 

typically categorized into memory; SoC hardware interfaces like USB, 

PCIE, and GPIO; and OS boot options.
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SBL configuration parameters are packed in a configuration 

binary blob. This binary blob is stitched with BIOS regions to apply the 

configuration at runtime (during Stage 1B phase of SBL).

The idea of the configuration binary block is to support multiple 

board configurations using a single system firmware image; hence, this 

blob contains configuration parameters for multiple different boards. 

The configuration binary block starts with a configuration blob header 

and is followed by the configuration parameters that are organized in 

configuration blocks. Each configuration block contains a block header 

followed by the parameter structure. Each configuration block is identified 

by a unique tag as PLATFORM_CFG_DATA, MEMORY_CFG_DATA, etc.

In SBL firmware architecture, the platform configuration relies on 

YAML files. Figure 2-9 shows the high-level view of the YAML-based 

configuration.

Figure 2-9. High-level YAML-based configuration

YAML is a data serialized language that can be used for generating 

the configuration blobs while working with other modern programming 
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languages. The idea here is to create all possible configuration options in 

SBL source code in the form of YAML syntax inside cfgdata. For example, a 

template of Debug Consent configure is shown here:

- DebugInterfaceEnable :

  name         : Enable or Disable processor debug features

  type         : Combo

  option       : $EN_DIS

  help         : >

                      Enable or Disable processor debug 

features; <b>0- Disable</b>; 1- Enable.

  length       : 0x01

  value        : 0x00

Users can open the CfgDataDef.yami file using the ConfigEditor GUI 

tool to allow the default value to be overridden.

All configuration YAML files will be processed by configuration 

tools like GenCfgData, CfgDataTool, and CfgDataStitch to generate 

configuration header files and binary blobs.

Finally, use the CfgDataStitch tool to patch the new configuration data 

file into the final firmware binary.

 Firmware Configuration Interface
Traditionally, coreboot has limited dynamic configuration capabilities 

compared to other system firmware used on the embedded system. 

Because coreboot was designed with the principle of instant boot and a 

small footprint, it doesn’t provide much scope for a preboot configuration 

environment like a UEFI browser. This eventually results in source-based 

modifications to enable/disable certain hardware interfaces as per system 

firmware users’ needs.

The firmware configuration interface in coreboot is designed to 

overcome such limitations and allow users to configure the possible 
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hardware interface at runtime. This interface will also help to maintain a 

single firmware image that can work seamlessly on different motherboards 

where the base schematics is the same but the I/Os might be different.

The coreboot Kconfig option CONFIG_FW_CONFIG can be used to 

enable this feature where the platform has decided to provide a bunch 

of configuration options as part of the devicetree.cb source code for 

runtime configuration.

The firmware configuration structure today is limited to a 64-bit 

value where the bitmask is used to determine the feature that needs to 

be configured at runtime. There are two possible implementations for 

enabling the firmware configuration interface in coreboot.

CBFS

A 64-bit raw value can be stored into CBFS with the 

name CONFIG_CBFS_PREFIX/fw_config. To enable 

this feature, coreboot needs to be built with the 

CONFIG_FW_CONFIG_CBFS option.

At runtime while the fw_config_probe() function 

is getting called, it will check the Kconfig option and 

load the CBFS filename to get this configuration 

value. cbfstool can be also used to override this 

binary blob at build time.

Embedded Controller

On the Chrome OS platform, the embedded 

controller interface will read and write the firmware 

configuration value using the CrOS Board Info (CBI) 

command. Mainboard users can select CONFIG_

FW_CONFIG_CHROME_EC_CBI options to read the 

fw_config value from EC CBI.
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The ectool command can also be used to configure 

this value using the ChromeOS environment.

Firmware Configuration Table

The firmware configuration table, which is part of 

the mainboard devicetree.cb file, starts with a 

special token as fw_config and terminates with end. 

The SCONFIG tool is used to parse this fw_config 

token to generate a static_fw_config.h file after 

understanding the grammar, where each field is 

defined by providing the field name, the start bit, 

and the end bit. Inside each field block, the option 

is used to provide the possible option name and 

associated value. This example configures the 

EMMC boot using fw_config:

field BOOT_DEVICE_EMMC 22

               option BOOT_EMMC_DISABLED 0

               option BOOT_EMMC_ENABLED 1

end

 Binary Configuration Tool (BCT)/Config Editor
The hybrid firmware development model is where the open source 

firmware development model gets stitched with closed binary blobs 

like the Firmware Support Package (FSP) to create the final firmware 

binary for embedded systems. Previous sections discussed in detail the 

possible options to configure the open source boot firmware, and this 

section will provide mechanisms to allow changes in the configuration 

settings for FSP binaries. The Binary Configuration Tool (BCT) (almost 

deprecated and replaced with a newer utility named Error! Hyperlink 

reference not valid.Config Editor) was developed by Intel to allow 
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configuration changes in static UPD configurations. Static UPDs are a 

kind of configuration parameter that isn’t really meant to change based 

on certain runtime decisions; hence, users can make use of BCT/Config 

Editor to open the FSP binary and modify the default UPD value as part of 

the SPI Flash image. This tool is not designed to manage the dynamic UPD 

configuration. See Figure 2-10.

Figure 2-10. Configuring static FSP-UPD using BCT

 Flashing Tools
In the system firmware development approach, the last but very significant 

tool is the flashing tool. Starting from the source code development all the 

way up to generating the final firmware image, the process will fulfill its 
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purpose only if the embedded system is able to boot after flashing the final 

image on the targeted embedded system’s boot device. The flashing tools 

are highly specific to the target embedded system; they need to know the 

hardware interface that can be used to flash into the boot device from the 

local or remote host. At the high level, these flashing tools can be divided 

into two categories: hardware-based tools and software-based tools.

In this section, we will discuss a few popular flashing tools used on the 

target hardware for flashing the system firmware. The assumption being 

made here is that all these embedded systems are using SPINOR as the 

boot device.

 Hardware-Based Tools
Hardware-based tools are used to flash the embedded systems in some 

specific scenarios like a device with an empty SPINOR as the very first boot 

during the manufacturing process, a corrupted SPINOR, or the device 

being unable to boot to the OS or pre-boot console to allow flashing using 

a software-based mechanism. This type of tool requires the host system 

to be connected to the target device where the host and the target device 

will connect using the hardware interface like USB or serial and where 

the host system is running the flashing software to write into the target 

device SPINOR.

 SPINOR Programmer

Mostly in all the latest embedded platforms, the SPINOR is the default 

and soldered onto the board; hence, either the board design has an SF 

programming header where the SPINOR programmer can be attached 

to flash the firmware image or you need to make use of some custom clip 

solution to attach directly onto the SPINOR chip itself for flashing. Dediprog 

SF100 and SF600 are the widely used in system programing. Programmers 

can flash the firmware on the target system using a USB interface.
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 Servo

Servo is a debug board used for Chrome OS projects for multipurpose 

operations. One such operations is to allow the developer to flash the CPU 

and EC SPINOR using the USB interface. Over the generations, the Servo 

hardware specification has evolved from v2 to v4. Flashrom is the utility for 

updating the SPI Flash using Servo while running from the Host machine 

as well. The utility expects to mention the external SPI programmer 

support using the -p option followed by the name of the FTDI FT2232 

device. For example:

sudo flashrom -V -p ft2232_spi:type=google-servo-v2 -w $IMAGE

This ensures the recovery of the bricked system by flashing the EC and 

system firmware using Servo.

 Software-Based Tools

The software-based tools don’t have any prerequisites for the underlying 

hardware interface or any dependency over the host system. These kinds 

of tools run on the target device to allow read, write, or erase on the 

SPINOR using the pre-OS or OS environment. The following are a few 

popular software-based flashing utilities being used on cross-firmware 

projects.

 Flashrom

An open source flashing utility is used across various operating systems 

and motherboards for detecting, reading, writing, erasing, and verifying 

the flash chips. The Flashtom tool can be used to flash coreboot/EFI 

images on the supported mainboard. Flashrom has support for various 

AICs like network, graphics, and storage.

Chapter 2  tools



174

It also supports a wide range of SPI programmers using USB interfaces 

like FTDI FT2232/FT4232H. The flashing mechanism is different from 

flashrom while using hardware-based tools like Servo to run as a user 

space application on the DUT itself.

Users can run the flashrom -p -w $IMAGE command to write the 

final firmware image into the SPINOR using the DUT OS command line. 

The flashrom source code is getting managed inside https://github.

com/flashrom/flashrom, and users are expected to build the flashrom 

source code to generate the flashrom tool binary. While working inside the 

Chrome OS project repository, developers can run the following command 

to generate the flashrom tool:

cros_workon --host start flashrom; sudo emerge flashrom

 UEFI Tools and Utility

Different vendors have created their own platform flashing tools using 

UEFI pre-boot services or native OS-based drivers to access the underlying 

SPI Flash device with the highest privilege.

AMI Firmware Update (AFU) is one popular tool (AfuEfix64.efi) used 

on the Aptio platform either from the pre-boot environment or from the 

OS layer to update the SPINOR. Many OEMs are using the uefiflash.efi 

binary to update the final firmware image from the EFI Shell environment 

as part of the shell automated script.

 Summary
This chapter has provided detailed analysis of various system firmware 

development tools such as build tools, configuration tools, and flashing 

tools that a developer has to be equipped with prior to starting their 

own system firmware development. This chapter might also be useful 

for firmware developers to understand the underlying tools architecture 
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and build process for popular boot firmware like EDKII and coreboot. 

This knowledge can be directly applied while creating your own system 

firmware using a new SoC/CPU architecture that is not yet supported by 

existing system firmware (EDKII or coreboot).

The book System Firmware: An Essential Guide to Open Source and 

Embedded Solutions has a case study about adding support for a new 

RISC-based CPU using EDKII.

We also discussed possible configuration options across different 

leading system firmware solutions so that developers can make the 

right decision when choosing the correct boot firmware for their target 

embedded system. Understanding flashing tools and the underlying 

hardware interface is useful to ensure guaranteed recovery even from the 

bricking state of the target device.
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CHAPTER 3

Infrastructure 
for Building Your Own 
Firmware

“Talk is cheap. Show me the code.”

—Linus Torvalds

Open source firmware development without the right infrastructure is 

like fighting a battle without proper weapons and trained troops. The idea 

behind open source development is to provide an inclusive environment 

across various parties, not limited to only certain companies. As source 

code development is an important piece while creating your own 

firmware for target hardware, having that code be reviewed by the open 

source community with the proper visibility in a timely manner is also 

key. This process might also involve migration, where in the future open 

source firmware will be used for embedded system development; hence, 

developers either need to open their existing infrastructures to the external 

world or adopt the available open source infrastructures for product 

development.

© Subrata Banik and Vincent Zimmer 2022 
S. Banik and V. Zimmer, Firmware Development,  
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This chapter will provide an overview of the existing open source 

infrastructure offerings and help the product development team make the 

right decision for creating their own firmware. Additionally, this chapter 

will focus on reducing the onboarding gap between firmware architecture 

migration and open source firmware development by reviewing the code 

of conduct and coding standard differences between different firmware 

versions.

 Overview of Source Control Management
Firmware development is a process that involves creating source code 

from scratch and modifying the source code based on the hardware 

behavior. In most cases, the firmware code is used to testify the hardware 

interface and eventually results in the platform specification.; hence, this 

source code development process might involve trial and error to create 

the final working version. Source code management (SCM) is important 

to ensure that the working code base never gets tampered with due to the 

trial-and- error part of the development process.

This process gets more complicated with more engineers working 

on the same project, which means there is a need to share the code in a 

central location rather than maintaining it on a local machine. This type 

of source control management is also referred to as version control and 

can work as a central database to host the source code for multiparty 

development. One developer might need to work on a module for 

developing new features, and others might need to make some bug fixes 

on the same module; hence, there might be a chance that while merging 

their individual code changes, they override each other’s work by mistake. 

Version control helps the team to solve such problems by tracking the 

changes for every individual and resolves any conflicts by rebasing the 

changes onto the branch master.

Chapter 3  InfrastruCture for BuIldIng Your own fIrmware



179

The source control also needs to be shared for peer review. While 

developing the firmware with the open source community, this step is 

important to submit code changes for review and generate pull requests 

for a reviewer to review your code changes.

Based on the previous discussion, it’s clear that any firmware is looking 

for three major features from SCM.

• A free, open-source-friendly, high-quality version 

control system

• A cloud-based repository hosting service that allows 

multiple teams to collaborate and share source code

• An application that can provide the code review 

functionality

Keeping these requirements in mind, let’s look at the existing offerings 

to select the correct SCM for firmware development.

 Version Control System
Using version control software (VCS) for firmware development provides 

flexibility for the development team to travel back and forth on a 

development branch without fear of losing the current project status. This 

process is sometimes sufficient to identify a regression by just filtering the 

branch based on different commit IDs and finding the culprit code change 

list (CL) without requiring any additional debugging.

 Subversion

Subversion (SVN) is a free and open source software tool for performing 

source control management. SVN is considered the successor to the 

widely used Concurrent Version System (CVS) tool on Windows operating 

systems. Many open source projects such as FreeBSD and SourceForge 

have used SVN for code management.
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SVN provides an improvement over CVS by adopting the concept 

of atomic operations, which prevents databases from being corrupted 

due to partial changes. Hence, most DevOps teams that relied on CVS 

in the past have switched to SVN for the improved features and fast 

response compared to CVS. Although SNV has support for almost all 

leading operating systems, it still provides better support with Windows 

OS. It provides easy plug-ins for integrating with modern IDEs, such as 

Visual Studio.

One of the most popular VCS tools that is used by various projects is 

called Git. As per the survey data conducted by Stack Overflow in 2018, Git 

is the dominant choice for VCS; approximately 88 percent of developers 

are checking in their source code using Git; the next most popular is 

Subversion with 16.1 percent.

 Git

Git is a free and open source project originally developed by Linus 

Torvalds to support the development of the Linux operating system kernel. 

Many open source projects such as the Linux kernel and Eclipse use Git for 

version control.

Git is an example of a distributed VCS (DVCS) because Git supports 

the installation and maintenance of the source tree in the local machine 

without any need of a remote cloud. Unlike other popular VCSs like SVN or 

CVS, where the full version history resides in a single place, in the case of 

Git, each local repository consists of the full history of project check-ins.

Here are the underlying principles of Git:

• Performance: The performance of the Git while doing 

tasks such as committing new changes, branching, 

merging, and comparing different versions is much 

better than any other version control software.
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Git was designed with the concept of a file system; 

hence, it makes the versioning easier compared to 

other SCMs. Git relies more on file content rather than 

on the name of the file. The filename is something that 

can change over the time by different developers based 

on project need.

• Distributed development: Unlike other version control 

management solutions, Git sets itself apart with 

its branching model. This allows for a distributed 

development where each developer’s local repo is self- 

sustaining in terms of the project development history 

and code changes. Later these changes can be pushed 

into the mainline branch from the local branch. See 

Figure 3-1.

Figure 3-1. Git distributed development model

This distributed development model provides flexibility 

to developers to experiment with the source code 

without creating any new repository when enabling a 

new feature that might need to add, modify, or delete 

files from the working branch.
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• Security: Git uses SHA-1 to ensure the integrity of 

the source code branch from accidental corruption. 

Starting from the content of the files, version, commits, 

tags, and other data objects for Git are secured with a 

cryptographically secure hash. The method to see the 

Git history is associated with the commit ID, which 

is also generated using a unique combination of the 

following:

• The source code tree

• The patent commit SHA-1

• The author information

• The committer information (if it’s different from 

the author)

• The commit message

Figure 3-2 shows the Git unique commit ID.

Figure 3-2. Git commit ID with commit message
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Git Working Model

The single biggest difference on Git that separates it from other source 

control management software is its branching model. As shown in 

Figure 3-1, Git supports distributed development that allows you to create 

an independent local repository upon syncing the source code from 

the remote repository. Working on the local branch is almost similar to 

working on the remote repository in terms of making any code changes, 

adding the changes, committing the changes, and merging into the local 

branch. Later you can submit those changes to the remote repository.

Figure 3-3 describes the Git branching model that allows developers 

to share the code with each other by creating development Git branches. 

These Git branches are an independent line of code compared to the 

default branch where typically developers start their work after syncing 

the code from the remote repository, known as the main branch or 

master branch. Any changes that are part of this Git local branch don’t 

automatically reach the master branch unless you perform a pull/push 

request.

Figure 3-3. Git branching model between remote and local branches
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At a high level, the Git working model can further divided into three 

major categories.

• Remote repository: This is typically referred to as a 

unified sharable code database, which is shareable 

across various developers based on either their 

access account or open access. The idea here is to 

allow seamless access of the source code beyond 

the local repository; hence, anyone in this world can 

contribute to the source code or even browse the 

code. This remote repository can hold one or more 

than one project repository. Typically it is the job of 

the DevOps team to create a remote repository for 

project development so that development resources 

can be shared, but this eventually reduces the 

development time.

• Local repository: After the DevOps team has provided 

you with the remote repository where you can check 

in the project files and folders, you still need to have a 

way to browse or modify the source files or directory 

structure in your local system. To support this, Git 

provides cloning, a mechanism by which developers 

can sync the source code from remote repositories 

(referred to as the origin) to their local machine. By 

default the source code resides in the branch known as 

the master branch. Figure 3-4 shows this cloning model 

to create the local repository.
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Figure 3-4. Git workflow between working directory and 
staging area

• Working directory: After syncing the source code from 

the origin to the master branch, the developer creates 

the local branch to ensure an unpolluted master 

branch. Developers are now free to modify the changes 

as per the project requirements. These changes reside 

in files and/or directories that are still not merged into 

the local branch.

 a. Staging area: The staging area is for the 

intermediate process by which the developer 

can prepare the snapshot of the local changes 

into the working directory prior to committing 

them into the local branch to keep track of those 

changes as part of the project change history.

Figure 3-5 provides a few examples of widely used Git commands and 

working relationships between these work streams (remote repository, 

local repository, and working directory) while using Git for source code 

management across teams.

Chapter 3  InfrastruCture for BuIldIng Your own fIrmware



186

Figure 3-5. Git workflow between working directory and 
staging area

Data Structure

The internals of Git were designed with keeping the file system concept in 

mind, which later extended to support a full set of features expected from 

a traditional SCM. Here, a detailed understanding of the information is 

stored by each commit uniquely in the form of a file system. Git has two 

data structures: a stage or cache index, to provide information about the 
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working directory and the revision supposed to be committed next on the 

working directory; and an object database. Each Git object consists of three 

pieces of information: type, size, and content. The size is the size of the 

contents of the file. Git uses three types of objects: commit, tree, and blobs.

Commit object: A commit object contains the metadata such as the 

tree, parent, author, committer, and commit information. The following 

diagram shows the commit object description (from the open source 

coreboot project):

commit 0603902..

tree 733f5fd..

parent 492a79..

author Subrata

committer Subrata
 

Developers can use the git show command with the --pretty=raw 

option to get more details about the commit object.

$ git show -s --pretty=raw 0603902

commit 06039025250e0908c8da63f879eafd2b3581db19

tree 733f5fd080bb87a9880441f9041ac17e4def6e64

parent 492a792d3872ee2683db169fb011daf87b71bff9

author Subrata Banik <subrata.banik@intel.com> 161528439 +0530

committer Subrata Banik <subrata.banik@intel.com> 

1615439203 +0000

    soc/intel/common/block/cpu: Use tab instead of space

     Convert the lines starting with whitespace with tab as 

applicable.
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     TEST=Built google/brya0 and ADLRVP with BUILD_TIMELESS=1: 

no changes.

    Signed-off-by: Subrata Banik <subrata.banik@intel.com>

Here is a description of the fields that are part of the commit object 

from the previous example:

• tree: The SHA-1 name points to the tree object. Each 

commit object is linked to a dedicated tree object to 

represent the contents of the directory at the time this 

commit is being made.

• parent: The SHA-1 name refers to the previous commit 

rather than the current one. If the current commit 

doesn’t have any previous comment, then the parent 

commit is “nil,” and the current commit is considered 

to be a “root” commit.

• author: The name string is the name of the author who 

wrote this code change.

• committer: The name string refers to the name of the 

person who committed the code change. In some 

cases, the author name and committer name could 

be different, such as if the author has sent the code 

changes to the committer to check into the database.

• comment: This describes the purpose for this 

code change.

Tree object: Each commit object points to a tree object, and each 

tree object further holds multiple points to blobs and other tree objects. 

Typically, a tree represents the directory structure in the project database 

and contains a list of filenames. Each filename points to a blob. The 

following diagram shows the tree object description (from the open source 

coreboot project):

Chapter 3  InfrastruCture for BuIldIng Your own fIrmware



189

tree 733f5fd..

blob ec0f95b.. Makefile

tree db803ce.. src

blob 14879c1.. README.md

tree 3f4fd34.. util
 

Developers can use the git ls-tree option to get more details about 

the tree object based on a SHA-1 name for a tree.
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Blob object: Each file listed in the tree points to a binary data object 

called a blob. The blob contains the compress contents of the file at the 

time of the commit. The blob file doesn’t have any name, timestamp, or 

metadata; hence, just renaming the filename doesn’t change the blob 

object that file is associated with. The following shows the blob object 

description (from the open source coreboot project):

blob ec0f95b..

## SPDX-License-Identifier: 
BSD-3-Clause

ifneq ($(words $(CURDIR)),1)
$(error Error: Path to the 

main directory cannot contain 
spaces) 
endif
top := $(CURDIR)
src := src

 

Developers can use the git show option to get more details about the 

blob object based on a SHA-1 name for a file.

Let’s look at a small example to understand the working relationship of 

these data objects across various Git commits.

Here is a sample project directory and file structure that are managed 

under Git SCM:
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Project HEAD With Latest Commit on HEAD

$ tree

.

|-- io.h

`-- x86emu

    |-- fpu_regs.h

    `-- x86emu.h

1 directory, 3 files

$ tree

.

|-- io.h

`-- x86emu

|-- fpu_regs.h

|-- regs.h

|-- types.h

`-- x86emu.h

1 directory, 5 files

Figure 3-6 is the example of git commit and associated data objects to 

show how it’s being managed to track changes in the Git commit history. 

The last commit (399689b..) has added two new files (regs.h and types.h) 

into the project directory, so two new blobs are shown in Figure 3-6 under 

the blob data object column.
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Figure 3-6. Relationship between Git data objects

The rest of the blob doesn’t change with the latest commit; hence, the 

tree links to the blobs from the previous commit. This method of reusing 

the blobs between commits helps to make the internal Git operations 

faster with optimized space.
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Setting Up Git

Using Git as a version control management software for firmware 

development has many benefits that we have already discussed such as 

a distributed development mechanism, flexibility, and wide community 

support for code maintenance without extra cost. Git is a universal tool 

that is available on almost all possible operating systems and is easy to 

install and use.

Installing Git on Windows

Windows users can download the stand-alone installer for Git from 

https://gitforwindows.org.

After successfully downloading the installer package, developers can 

start the installation, and the Git Setup installation wizard will prompt 

for the default installation path and the default settings to complete the 

installation, as shown in Figure 3-7.

Figure 3-7. Git Setup installation wizard with default settings
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At this stage, Windows users can open Git Bash to start syncing the 

source code from the remote repository or pushing the code into the 

remote branch. Prior to that, the user needs to configure the username and 

email to allow Git to use this information to add during Signed-off-by 

when running git commit -s.

$ git config --global user.name 'Subrata Banik'

$ git config --global user.email hello@git.com

Installing Git on Linux

With the Linux distribution package, the user can choose to make use of 

either apt or yum to install the Git package.

From the Linux terminal, install Git using apt-get on Debian/Ubuntu.

$ sudo apt-get update

$ sudo apt-get install git

Or make use of dnf/yum to install Git on Fedora.

$ sudo yum install git

After installing the Git package, users can run git --version to verify 

the installation version. Linux users also can download the Git source 

code and dependent package to be able to build the code to create the Git 

installer. After successful installation, the user needs to add a username 

and email ID in a similar manner to what’s being done for Windows Git 

installation.

Create and Register Git SSH

User authentication works slightly differently when working with Git. 

Instead of using a username and email ID to log in to Git, Git uses an 

SSH key (an access credential for the SSH network protocol) to create 

a public/private key pair to initiate a trusted communication with 
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the remote branch. SSH keys are generated using a key cryptographic 

algorithm (typically, RSA) for which the SSH command line has included 

the key generation tool. The public key is registered with the Git remote 

repository, while the private key is stored on the development machine. 

The combination of public/private key pairs will help users to pull/push 

the source code changes from/to remote repositories.

The process for creating the SSH key is the same across different 

operating systems (note: on Windows OS, users need to use the Git Bash 

shell to run these commands). Typically, these operations are taking place 

inside the .ssh directory (create it if it is not available by default).

Step 1: Use the SSH keygen tool and run the following command:

$ ssh-keygen -t rsa

This command will create a new SSH key pair and prompt you to enter 

a file in which to save the key. Users can either specify the new file location 

or press Enter to accept the default path as /Users/<user_name>/.

ssh/id_rsa.

Step 2: Additionally, it will ask to enter the passphrase, which may 

work as an additional layer of security in case someone has access to your 

development machine and might access the remote repository. Adding a 

passphrase will reduce the risk even with a physical attack.

$ ssh-keygen -t rsa

Enter a file in which to save the key (/Users/Subrata/.ssh/

id_rsa): [Press enter]

Enter passphrase (empty for no passphrase): [Type a passphrase]

Enter same passphrase again: [Type passphrase again]

Your identification has been saved in /Users/Subrata/.

ssh/id_rsa.

Your public key has been saved in /Users/Subrata/.ssh/id_

rsa.pub.
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The new SSH key is now registered, and users can make use of the Git 

repository.

Git Cheat Sheet

This section provides lists of basic, useful, and advanced Git commands 

that might be helpful for new users who have migrated from other SCM 

versions to Git and started managing the project database. From my 

experience, while migrating the project from internal or closed source 

SCM to open source Git, the initial few weeks are tough because of the 

number of Git commands used for pulling/pushing the repository, 

rebasing, resetting the HEAD, etc. Ideally this effort will be useful for 

developers and eventually save development time as well.

Basic Commands

git init 

<directory 

name>

this is the first step to bring a directory under git control. run 

this command with a directory name specified to create an 

empty git repository. not specifying the directory name will 

result in initializing git into the current directory.

git clone 

<repo>

run this command to clone the remote repository specified 

with the repo into the local machine to create the local repo. 

the remote repository can be located in a remote machine and 

accessed via http or ssh.

git diff this command shows the unstaged changes in the working 

directory.

git log list the entire commit history from the local repo using the 

default format. appending --oneline will show each commit 

to a single line, and -p will display the full diff of each commit 

changes.

(continued)
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(continued)

Basic Commands

git status show the current changes in the working directory. this 

command lists the files in three categories as staged, unstaged, 

and untracked.

git add 

<file(s)/

directory 

name>

run this command to stage all the changes from the working 

directory to the local repository.

git rm 

<file(s)/

directory 

name>

run this command to remove a file(s) or directory from the 

working directory to the local repository.

git commit -s Commit the staged snapshot and add a description about the 

changes. use --amend instead of -s to modify the existing 

commit.

git format- 

patch  

 -<commit 

count>

run this command to create patch files from the current branch 

head based on the commit count. It’s a useful command to 

share working patch files between teams without review.

git am 

<patch-file>

apply patch-file generated from the format-patch 

command on the local repo. all changes as part of this 

command will be part of the staged changes and in a committed 

state.

git apply 

<diff file>

apply changes from the diff file to the working directory. all 

changes will be listed under unstaged files.

git rebase -i 

<base SHA-ID>

Interactively rebase the current branch onto the base sha 

Id. users can specify the mode of changes for each commit 

using rebase.
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(continued)

Basic Commands

git rebase  

 --continue

run this command to migrate to the current branch’s latest 

commit after finishing the rebasing process.

Undo Commands

git revert 

<commit id>

Create a new commit by reverting any previous commit 

specified by the commit Id.

git reset 

<file>

remove the file from the staging area to the unstage area 

without overriding the changes being made to the file.

git reset use this command to undo the changes from the staging area to 

match the recent commit.

git reset  

 --hard

use this command to undo the changes from the staging area 

to match the recent commit and overwrite all changes in the 

working directory.

git reset  

 --hard 

<commit id>

move the current branch head backward to a commit 

specified by a commit Id. this process will eventually delete all 

uncommitted changes.

git undo a good thing about git is that there’s a “undo” command that is 

capable of recovering from an undue state, such as correcting 

the last commit to include that small change. revert a whole 

commit because that feature isn’t necessary anymore.

Managing Branches

git branch list all the branches in the local repo. specify a branch name to 

create a new branch.
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Basic Commands

git checkout  

 -b <branch>

Create and check out to a new branch specified with the branch 

name. don’t use the -b flag if an existing branch is available 

with the same branch name.

git merge 

<branch>

merge a branch into the current branch.

git reflog reference the log (reflog) to record the changes made on the 

tips of branches and other references in the local repo. this is a 

useful command to travel between various changes in the local 

branch without impacting the remote repo.

Accessing Remote Repository

git remote 

add <remote 

name> <remote 

url>

Create a new connection to a remote repo.

git fetch 

<remote name> 

<branch>

fetch a specific branch from the remote repo.

git pull 

<remote name>

fetch the code from a specific remote repository into the current 

local branch.

git push 

<remote_name> 

<branch>

this command pushes the branch specified with the branch 

name to remote. If the branch name is not specified, then it will 

push changes ahead of HEAD in a local branch to the remote 

repository.
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 Version Control Repository Hosting Service
Earlier we provided details about version control and using Git because 

it’s the most efficient way to handle version control management. Unless 

you have a hosting service to manage your version control outside your 

local machine, it’s not possible to allow a wider audience to contribute to 

your project development and review the activity. This section discusses 

a version control repository hosting service to manage more than one Git 

version control efficiently.

A most common way to explain the version control hosting service is 

that it’s like LinkedIn, a web-based hosting service for your professional 

work where you can add your work details, experiences, achievements, 

etc., for others to see and comment on. Similarly, GitHub is a web-based 

version control repository hosting service for Git. Git allows you to manage 

the version control over a local host or server, whereas GitHub provides 

a cloud-based hosting service that lets you manage your multiple Git 

repositories after creating a free account on GitHub.

 GitHub

GitHub is a web-based Git repository hosting service that allows all of the 

distributed development features, version revision control, and source 

code management functionality of Git as well as its own features. GitHub 

provides a graphical user interface so that an individual Git repository can 

be remotely accessed by an authorized person from any computer without 

cloning the code into a local machine. From the user standpoint, it looks 

as if a hub that allows docking of several different Git repositories that 

users can browse. Figure 3-8 shows the high-level GitHub work model with 

hosting various Git repositories.
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Figure 3-8. GitHub work model

GitHub provides a no-cost user profile for accessing the basic open 

source repositories (it also has an access control method to restrict 

unauthorized user access). Typically, GitHub accounts come with an 

abundant storage space that allows users to host their working project and 

allows the open source community to review, modify, and share feedback 

by creating separate Git branches. This also helps to build the professional 

profile to know the developer’s proficiency.

Unlike Git, GitHub recommends its users work on a specific branch 

while developing any new feature. This makes it possible for entire teams to 

work together in a single project even without being bottlenecked on each 

other while implementing the code changes. With each new code change, a 

new branch is created; these branches are like copies and won’t get merged 

into the master branch unless the user chooses to raise a pull request for 

review. As mentioned earlier, GitHub not only inherits features from Git but 

also has few unique features over Git to make it more powerful.

• Fork: This is a copy of a repo in your own user account 

where you can make the changes without affecting 

the original project. Suppose your account doesn’t 
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have access to write into a repository; then this feature 

allows you to copy one user’s repository into your 

own account and modify it. Later you can raise a pull 

request to the project owner to allow merging into the 

original project.

• Pull request: Unlike Git, this pull request is different 

from what pull does in Git. This allows a GitHub user 

to share the code changes with the project owner once 

the change is ready after copying the original project 

repo. Using pull requests, you can notify others about 

changes you’ve pushed to a branch in a repository on 

GitHub. Once a pull request is opened, you can discuss 

and review the potential changes with project owners 

and add follow-up commits before your changes are 

merged into the master branch. This is equivalent to 

reviewing record creation in Gerrit.

• Pull: Just for reference, git pull is a convenient 

operation that a user does while working at the Git 

command line for getting the latest changes from 

the remote repository.

• Merge: After the user has raised the pull request and the 

project owner has approved the changes, the project 

owner can merge these changes found in your repo 

into the original repository just by clicking the “Merge 

pull request” button.

Users often get confused between the original purpose of Git and 

GitHub as they’re tightly coupled, but here are the differences between Git 

and GitHub:

Chapter 3  InfrastruCture for BuIldIng Your own fIrmware



203

Git GitHub

git is a command-line 

software/tool.

github is a guI enabled, web-based repository 

hosting service.

the purpose of git is to track 

the changes being done in the 

different local repositories to 

provide the VCs and sCm.

github provides an abundant storage space to 

upload several git repositories. github not only 

inherits features from git like VCs or sCm but 

also has its own few key features like forks, pull 

requests, and merges.

 Code Review Application
In earlier sections, you learned how to use the version control system on 

local machines and make it available in the cloud for much wider access. 

The power of Git and GitHub also provides a responsibility to its users 

(developers and maintainers) to make sure each code change goes through 

a proper review process and there is a way to track the review comments. 

Assume a developer came back a year after the code submissions and 

asked a very basic question about the integrity of the code. Without a 

backup system that points back to the code review database, it would be 

difficult to answer such questions. Hence, there is a need to have a code 

review model as well as part of the firmware development infrastructure.

In general, one could argue that GitHub by default provides options 

to review the code changes as soon as someone adds changes and raises 

a pull request. But there are some serious concerns while reviewing the 

code in that format where one might lose track of the comments in the 

code, and viewing the exact code changed since the last commit is really 

difficult. There are some offline tools that will allow you to manually diff 

the code changes, but doing this for every pull request makes the reviewer 

lose interest in reviewing the code.
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 Gerrit

Gerrit is a free web-based open source software application that provides 

the code review functionality. The purpose of Gerrit is to make the 

code review easier and more efficient. Gerrit application serves as an 

intermediate between developers and the Git repositories. It also can 

be viewed as a web-based Git repository hosting service for code review 

purposes.

Unlike GitHub, Gerrit doesn’t support multiple commits under a single 

pull request. The fundamental idea for Gerrit is that one code change 

is like one node in the overall commit. For example, once you are done 

with your code changes and generate a commit using the git commit -s 

command, you will add the unique change ID to track the changes and 

submit the code for review using git push <remote-name> HEAD:refs/

for/master. Gerrit will generate a unique commit ID for each code change 

being submitted, and any incremental changes on top of that commit ID 

using the same change ID would create a new patchset. Because each 

patchset is treated separately in Gerrit, any review comments given for 

a particular patchsets would be part of the tracking process unless the 

developer has addressed the comments and marked them resolved.

At a high level, this process is much simpler compared to the GitHub 

review process where a developer first needs to fork the remote repo into 

the user’s own account and then clone that code into a local machine, 

create a branch, make the changes, push the changes, and then finally 

create the pull request for review. With Gerrit, developers just need to 

clone the remote repo, do the changes, and push it directly into the master 

branch for review. Here are the primary functions of Gerrit that make it a 

powerful review medium:

Asking for code review: Gerrit provides a simple 

and open code review process. Submitters can add 

the reviewer name (or email ID), and Gerrit will 
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notify the reviewer once they have been added. Also, 

this is a very open cultured environment where 

anyone can add to a Gerrit review. See Figure 3-9.

Figure 3-9. Gerrit My Review view from Gerrit dashboard

• Reviewing the code changes: A Gerrit code review 

provides a nice side-by-side representation to compare 

the original and modified code. Each code change 

ranges from -2 to +2 (by default the code review 

starts with the Code-Review as 0), and a code review 

requires a minimum Code-Review +2 (looks good to 

me, approved) vote to get merged into the mainline. 

We will discuss code review etiquettes in the “Code of 

Conduct” section. If the reviewer has some concerns, 

then the reviewer could initiate a discussion by adding 

a review comment for each new line of code added. See 

Figure 3-10.
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Figure 3-10. Gerrit adding review comments

• New patchset: If the reviewer is not satisfied with the 

code review and added the code review comments 

with a suggestion to improve the code qualification, 

then the submitter would need to push a new patchset 

to address those review comments. This process 

continues until the submitter resolves all review 

comments and the reviewer has casted the vote to let 

go of this code change.
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In Gerrit, each patchset refers to a separate code review. 

Each time the submitter addresses the review comments 

and updates the commit using git commit  

 --amend, it regenerates the new commit hash. The 

difference between the old commit hash and new 

commit hash will allow Gerrit to show the delta code 

between two patchsets. This process is very efficient 

while reviewing significant big code changes that involve 

multiple files; hence, reviewers don’t need to review 

all the code changes every time. Rather, the difference 

between the current (n patchset) and previous patchsets 

(n-1) would help to list the modified files between 

those two patchsets. If there are no changes in those 

two patchsets (may be a rebase), then a Gerrit GUI will 

explicitly mention “nothing new to see.” See Figure 3-11.

Figure 3-11. Multiple patchsets to address review comments
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• Submitting code changes: After the code review is done 

and the patchset has required the correct number 

of votes for Code-Review, All-Comments-Resolved, 

and Verified (and others some third-party plug-ins 

if applicable like IP scan, etc.), a project maintainer 

can allow the code changes into the mainline of the 

repository by clicking the Submit button. This process 

of allowing code changes into the master branch 

of the project repository might need special access 

permission.

If the purpose is just a code review in a much simpler and efficient way 

and ensures that the code review process is being maintained separately 

from managing the Git repositories, then Gerrit is the best option for you 

while developing your own firmware for embedded systems.

 Best Known Mechanism of Source 
Code Management
SCM not only provides the version controlling mechanism but also 

provides a flexible, collaborative code development environment that 

is a must-have for the firmware development approach using the open 

source firmware development model. SCM is a huge boost for the 

engineering team to be able to manage the code development and project 

history without any additional resource code. Here are some best known 

mechanisms to handle the SCM efficiently:

Commit frequently: Commits don’t cost anything 

to anyone, and they’re easy to create. Don’t try 

to combine unnecessary code changes into one 

commit just to avoid meaningful multiple commits 

if possible. Ideally developers should make the 

commit as an incremental approach toward the 
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firmware development process. Frequent and small 

commits also help while debugging the issue by 

using git bisect.

Latest to upstream master: Working in a distributed 

development environment, it’s important to always 

be in sync with the latest upstream code. It’s been 

seen that many developers don’t bother updating 

their local copy with the latest upstream master 

code. This eventually creates a problem while trying 

to commit a change sitting in a local copy that is 

far behind the latest upstream master. Hence, it’s 

recommended to update the local copy on a regular 

basis to avoid merge conflicts.

Provide details in commit: Commit is the face of the 

underlying code change, and everyone might not 

have the time and interest to go through the entire 

code while using git bisect. Having a meaningful 

commit message with ample details allows 

developers to understand why the code changes are 

being made and what is in the code at a high level 

without deep dive into each commit.

Make use of branches: Git provides a powerful 

branching model where developers can create their 

own branch derived from the master to continue 

their development. This process ensures the master 

always remains untouched or unpolluted. Once 

development is done on a specific branch, then it 

can be merged into the master.
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Prompt addressing review comments: Avoid 

outstanding review comments for more than 24 

hours. It’s the patch owner’s responsibility to ensure 

all of the review comments are addressed. Don’t 

leave your patch at the half-done stage. If you 

think your patch is not progressing in the review, 

seek help and ask for review. Also, avoid rebasing 

the entire patch tree repeatedly. It’s painful for 

reviewers as it will spam their inboxes.

 Code of Conduct
Working on a firmware project using an open source firmware 

development model means collaborating with a wider technical 

community. This community involves a mixture of professionals with 

different domain expertise, volunteers, and students from all over the 

world. They all are working together for their mutual interest in making the 

virtual workplace inclusive to connect with people, learn from each other, 

and provide mentorship as and when required.

Such a diverse environment might also lead to a communication gap 

and unpleasant situations if not managed with some standard protocols, 

which are also referred to as a code of conduct (CoC). The CoC provides 

some basic ground rules that the community should follow to make the 

workplace free from bad experiences. The point of defining the CoC is to 

bring equality to folks with vast technical knowledge and experience, even 

to the youngest contributor who has just started their professional journey 

in firmware. Here is some common community etiquette that every 

individual can follow:

• Be friendly and supportive in all possible forms of 

communication including the Gerrit code review, 

mailing lists, IRC chat rooms, reporting bugs, and 

virtual or physical meetings in events or conferences.
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• Be open while giving comments and receiving 

comments as well. In the majority of cases, unpleasant 

situations happen during the code review.

For each code change, the Gerrit code review provides 

a range between -2 to +2. The way it works is if the 

reviewer gives -2 to a code change, it means there 

is something very wrong fundamentally, and the 

reviewer doesn’t accept the code change and also 

forbids the code changes from being merged into the 

mainline. Typically, reviewers should provide ample 

details to justify the -2 vote and provide a path forward 

to overcome this vote in the coming patchset. A -1 

vote shows the same preference as -2 but on a slightly 

lighter note where reviewers don’t want to merge this 

code change as is. A good reviewer not only casts their 

vote but also provides equally good review comments 

for the submitter so that the submitter can move ahead 

with the code changes and fix the problem. Note: in 

general, each code change has its own purpose, so it’s 

better not to create a roadblock for others.

• Be sensitive about the fact that due to the distributive 

development approach of open source firmware, 

many active project contributors are not native English 

speakers; hence, they might have misunderstood the 

review comments or provided some comments that 

might appear rude.

• Be careful with any words that might spread hatred, 

commenting on someone’s sexual orientation, gender, 

race, religion, educational qualification, color, or 

disability. Also, avoid inappropriate physical contact and 

unwelcome sexual attention during face-to-face meetings.
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If you come across any of these situations, then please reach out to 

the concerned team via email. Typically, all open source communities 

have strict CoC policies to ensure that the community doesn’t encourage 

unacceptable behavior. The best practice to avoid such unpleasant 

situations is to stop such issues at their core, and once an issue is raised, 

people are expected to comply immediately. Making the same mistake in 

a repetitive manner might result in a temporary ban or permanent block 

from the community.

Although this is not the exhaustive list of dos and don’ts in the open 

source firmware development community, while you are focusing on 

creating your own firmware, these are basic guidelines to make developers 

and reviewers understand their roles and responsibility while they are 

taking part in such technical communities.

 Coding Standard
The purpose of this book is to provide all the required details to prepare 

developers for architecture migration from closed source firmware 

development to open source firmware development. In this migration 

process, one important thing that remains unnoticed is the coding 

standard.

Developing firmware is more than just writing the code that will work 

on embedded systems. Rather, the firmware engineer also needs to ensure 

there is a long-term maintenance plan for the written code. This process 

involves the following:

• Define a coding style that can be easily adopted by 

all developers, even the most recent ones, with a 

minimum learning curve.

• Write code in such a way that provides ample 

information about the change requirements.
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• Code maintenance should be independent of the 

original author; that means the written code can 

be maintained by others without having detailed 

knowledge about the intricacies of the code.

• Provide documentation wherever possible to explain 

the accurate code changes to minimize the learning 

curve for new engineers.

The most popular firmware uses the C programming language because 

of its simplicity, flexibility, and wide adoption in embedded systems. But 

the problem that the C programming language faces is the inconsistent 

ways it’s used among various developer groups. This lack of uniformity in 

developing firmware using C makes it harder to use unless a unified coding 

standard is enforced.

Although each firmware has its own coding standard and guidelines 

for developing the source code, this section will discuss the open source 

firmware development approach using coreboot. The topics covered in 

this coding standard include the following:

• C language rules and guidelines

• Naming conventions

• Commenting rules

• Standard way to create commit message

Ideally these guidelines will be helpful for engineers migrating their 

architecture from closed source firmware development to open source.

The major benefit that coreboot provides to its developers is the 

similarity with the Linux kernel coding style. Hence, it’s easy to adopt 

among developers.
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 Indentation
The idea behind indentation is to make it easy for the developer to look at 

the code. It helps to define where a block of control starts and ends. Tabs 

are eight characters, and hence indentations are also eight characters. 

Refer to the following example:

int azalia_enter_reset(u8 *base)

{

>>       /* Set bit 0 to 0 to enter reset state (BAR + 

0x8)[0] */

>>      return azalia_set_bits(base + GCTL_REG, GCTL_CRST, 0);

}

Using eight characters for multiple indentation levels in a switch 

statement would be difficult; therefore, you can align the switch and 

its subordinate case labels in the same column. Refer to the following 

example:

>>      switch (src) {

>>      case EC_SMI_BATTERY_LOW:

>>      >>       printk(BIOS_DEBUG, "Battery low. Shutting 

down\n");

>>      >>     outl(ACPI_PM1_CNT_SLEEP(S5), ACPI_PM1_CNT_BLK);

>>      >>     break;

>>      default:

>>      >>     printk(BIOS_DEBUG, "EC_SMI event 0x%x\n", src);

>>      }

The intention here is to provide better code readability for the 

developer; hence, it’s recommended not to make a cluttered single line, 

which is tough to read and understand. The following example shows the 

difference between bad and good programming practices, although the 

compiler grammar would be able to understand both:
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Bad Programming Practice Good Programming Practice

int a = 1, b = 2, c, d;
c = a + b; d = b - a;
if (expression is true) return true;

return false;

int a = 1;
int b = 2;
int c = a + b;
int d = b - a;
if (expression is true)

return true;
return false;

 

vim is a widely used source code editor for the Linux OS. In addition, 

there are many advanced feature integrated development environments 

(IDEs) available like Eclipse that make life easy for developers and don’t 

leave space at the end of lines; also, avoid having unnecessary blank lines 

between two source code lines.

coreboot supports a special file for configuration called Kconfig. This 

file consists of several configuration tokens called config. config supports 

mixed indentation where all definitions are indented with one tab but help 

text is indented with an additional two whitespaces. Here’s an example:

config CONFIGURABLE_CBFS_PREFIX

>>      bool

>>      help

>>       ..Select this to prompt to use to configure the prefix 

for cbfs files.

 Maximum Columns per Line
Coding standards are also necessary to make it easy for reviewers to 

understand the code with a single glance. Having a longer code line with 

too many characters in it makes it harder to follow the purpose of that line 

and reduces the code readability.

Typically, many firmware coding standards recommend limiting the 

single line by 80 columns. In the latest version of coreboot, this limit is 
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96 columns per line. If you need to write a longer line than 96 characters, 

then make use of the newline character to break the line onto the next 

line. There are some exceptions such as printk functions, where breaking 

such functions onto multiple lines is not recommended as it will break the 

ability to grep a user-visible line while debugging.

 Using Braces
For conditional statements there is a need to combine all the required 

actions under the statement to make it more readable. In the C 

programming language, braces are used for this purpose. Here’s an 

example:

if (!rom) {

      printk(BIOS_ERR, "%s failed\n", __func__);

      return current;

}

This applies to all conditional statements such as if, switch, do, while, 

for, etc., where the opening brace is the last character on the line, and the 

closing brace is first on the next line.

You don’t need to use unnecessary braces for a single statement, as 

follows:

if (!rom)

      rom = pci_rom_probe(device);

The previous recommendation doesn’t apply if a conditional 

statement doesn’t have a single statement in both cases. The following 

example uses braces even if one conditional statement still has a single 

statement:

if (dock_present()) {

      printk(BIOS_DEBUG, "dock is connected\n");
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      dock_connect();

} else {

      printk(BIOS_DEBUG, "dock is not connected\n");

}

The starting of the brace rule certainly doesn’t apply for functions 

where the opening brace starts at the beginning of the next line, as 

shown here:

void __noreturn pcidev_die(void)

{

        die("PCI: dev is NULL!\n");

}

 Need for Spaces
This is why you need to use spaces:

• Recommendation for keywords and functions: Typically, 

you will use spaces after most of the keywords such 

as if, else, switch, do, while, and for, but there are 

exceptions like sizeof, typeof, etc., which look similar 

to a function call. Refer to the previous examples where 

whitespace is used between if and expression. Also, 

note that there is no whitespace between the function 

name and passing argument. Do not add spaces 

around (inside) parenthesized expressions.
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Bad Programming Practice Good Programming Practice

if(!rom)

    rom = pci_rom_probe ( device);

if (!rom)

   rom = pci_rom_probe(device);

addr -= sizeof  (struct cpu_info); addr -= sizeof(struct cpu_info);
 

• Recommendation for operators: Use one space 

around the most binary and ternary operators, but 

there are exceptions like no space after the unary 

operators, no space before the postfix increment and 

decrement unary operators, and no space after the 

prefix increment and decrement unary operators. Also, 

there is no space around the period (.) and arrow 

operators (->).

Bad Programming Practice Good Programming Practice

unsigned int a=1;

unsigned int b = 2;

unsigned int c= ! (++ a + b --)

unsigned int a = 1;

unsigned int b = 2;

unsigned int c = !(++a + b--)
 

 Naming Conventions
Each firmware programming standard has its own naming conventions for 

defining variables (local and global) and function names.

• Recommendation for variable name: Avoid using 

CamelCase while defining a new variable, for example: 

VariableNameIsTmp. Use variable names that are short 

and meaningful.
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It’s recommended to make limited usage of global 

variables and to have a descriptive global variable 

name to use across different functions. In the case of 

UEFI, a global variable should start with m followed by 

a variable name.

The scope of local variables is limited; hence, variable 

names also need to be short.

• Recommendation for function name: The function 

name should represent an action, so the name should 

be something that makes it clear what it does, for 

example, do_something() instead of tmp_function(). 

Here is the rule of thumb: variable names are often 

nouns, and making function names verbs in the code 

can be more readable.

void cpu_set_max_ratio(void)

{

    /* Check for configurable TDP option */

    if (get_turbo_state() == TURBO_ENABLED)

        cpu_set_p_state_to_turbo_ratio();

}

 Typedefs
Using typedef is controversial among different firmware.

As per the coreboot coding standard, it’s recommended not to use 

typedefs for structures and enums, whereas in UEFI, it’s mandatory to use 

typedefs and not use structs in source files.
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coreboot Coding Style UEFI Coding Style

struct reset_mapping {

      uint32_t logical;

      uint32_t chipset;

};

struct reset_mapping map;

typedef struct {

uint32_t logical;

uint32_t chipset;

} reset_mapping;

reset_mapping map;

The only exceptions to this recommendation are u8/u16/u32/u64 

types in coreboot, these are typedef of the standard datatypes like unsigned 

int/long, etc.

 Commenting
Comments are good, but over-commenting defeats their purpose. The only 

purpose that commenting serves is to let the code live on for many years; 

in other words, comments are helpful to understand the code at a high 

level without going deep into it. The recommendation is to provide what 

your code does in comment sections rather than being explicit about how 

it’s doing it. Also, avoid commenting on each line, which makes code look 

ugly. The coreboot style for commenting is the C89 /* ..*/. The following 

is an example of the preferred approach for commenting:

Short Comments Long Comments

/* This structure will be used 

to

   describe a community or each

   group within a community. */

/*

* This structure will be used 

to

* describe a community or each

* group within a community.

*/
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 Write a Good Commit Message
Earlier sections provided required information on how to improve the 

project code quality by adopting a coding standard as per the target 

firmware architecture (we discussed coreboot in detail). A good firmware 

engineer not only bothers to write quality source code but also gives equal 

importance to commit messages as commit messages are significantly 

helpful while debugging a problem.

From my experience, folks spend a good amount of time writing the 

code and reviewing the code, but when it comes to writing a commit 

message, people lose their interest. Here’s a funny example of how back- 

to- back commit messages lost their purpose and were meaningless:

ID Commit Date

123.. Create infrastructure to get System Time 10 Hours Ago

456.. Add API to implement time routines 8 Hours Ago

789.. Calling API 6 Hours Ago

ABC.. Add some new APIs 4 Hours Ago

DEF.. Missed to add few APIs hence adding  
those here

3 Hours Ago

A1B.. Don’t know why I’m adding this code but it’s 
needed

3 Hours Ago

2C3 Everything is working now with this CL 2 Hours Ago
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Here are the seven golden rules when creating a great commit 

message:

• Maintain a separate submit from the body with a 

blank line.

• Try to limit the subject line to 50 characters.

• Capitalize the subject line.

• Don’t end the subject line with a period.

• Write the subject line in imperative tense.

• Don’t exceed the body beyond 72 columns per line.

• Use the body to explain what’s new and why it’s 

changing and how.

Figure 3-12 shows a sample commit message that adheres to these 

recommendations.
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Figure 3-12. Sample commit message following the golden rule

Figure 3-13 shows the actual commit that was submitted for a Gerrit 

review after following the golden rule, as described in Figure 3-13. A 

quality commit message always increases your chances to get a quick 

review and required vote to merge compared to a partial or an incomplete 

commit message.
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Figure 3-13. Actual Gerrit commit based on the golden rule

In conclusion, this section provided the basic principle behind 

creating a qualified source code by adhering to a specification. It’s 

recommended that all users should follow this specification without 

failure. By default many development environments/studios have 
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integrated the checkpatch- like script that does the coding style check 

and expects to run this script while creating the code changes prior to 

submitting the code for review.

 Summary
This chapter helped you understand the value of infrastructure tools 

while doing the firmware development. Typically, software/firmware 

engineers place a high precedence on creating source code and fixing 

bugs on embedded systems. Maintaining the source code and sharing 

across multiple teams are also equally important in the firmware 

journey. Source control management is an invaluable tool for firmware 

development. This chapter provided a detailed analysis of the best possible 

SCM available for open source development and its feature sets. Many 

engineers use Git, GitHub, and Gerrit in their day-to-day activity but are 

unable to understand the working relationship between these infra tools 

and choose the best one for their needs. Finally, this chapter highlighted 

the basic developers rights while working in a distributed development 

environment, including the best practices to create the code changes by 

adhering to the coding standard and submitting the code changes that 

help your chances of getting code merged into the remote repository after 

a quick review.
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CHAPTER 4

System Firmware 
Debugging

“Programming allows you to think about thinking, and 
while debugging you learn learning.”

—Nicholas Negroponte

If system firmware development is an art, then debugging that firmware 

is a fine art. The debugging process primarily depends on a thorough 

understanding of the platform capabilities (for both the SoC and board 

design), system architecture, and system boot state. Additionally, requires 

an appropriate debug methodology to deliver a solution. Embedded 

systems are highly customized to address the market needs. As the 

smartphone, tablet, personal computer, and household robot markets 

expand, silicon and platform designers have a challenge to provide ample 

hardware capabilities to debug the platform at the many different stages 

of the product life cycle. In addition, most embedded systems have a 

limited dedicated debug capability due to their small form factor (SFF) 

and fewer hardware revisions possible between prototype and mass 

production (MP).

System failures are expected at any phase of the product development 

cycle and even after the product launch while the device is in use. 

Firmware, being the closest possible entity to the underlying SoC and 

© Subrata Banik and Vincent Zimmer 2022 
S. Banik and V. Zimmer, Firmware Development,  
https://doi.org/10.1007/978-1-4842-7974-8_4

https://doi.org/10.1007/978-1-4842-7974-8_4


228

hardware, is responsible for diagnosing a defect and providing a solution 

if possible. System firmware running into those embedded platforms has 

its own debug architecture and methodology that needs an adaptations 

based on the target hardware. For example, the system firmware debug 

methodology will undergo changes from the early stages of product 

development (proto, engineering validation test [EVT]) in an open case 

or bench environment to the advanced/final stage (design validation test 

[DVT] to platform MP) in a closed case.

The system firmware needs to inherit a variety of debugging 

methodologies to overcome such dynamics to the platform hardware 

design and provide SoC architecture-agnostic solutions. This functionality 

may need to be implemented at the firmware architecture level to ensure 

easier migration of system firmware without any visible impact on 

platform debug capabilities.

At a high level, these debug capabilities can be divided into two 

categories.

Hardware-assisted debugging: The key reason to use hardware- 

assisted debugging methods is the nature of the defects, such as if 

the detects are seen early in the boot phase, where software-based 

debugging is not feasible, or there is a need to access a CPU register in a 

multithreaded environment where attempting to enable software-based 

debugging might result in unpredictable system behavior.

This hardware-assisted debugging can be further divided into the 

following subcategories:

• Generic debugging: The kind of hardware debugger is 

attached neither with any SoC or CPU architecture nor 

with any OxM-specific hardware. These debug aids 

are very generic and can be applicable based on the 

hardware interface.

• SoC/CPU-based debugging: The hardware debugger 

used in this process is very specific to the target CPU or 
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SoC architecture. No matter which target SoC or CPU 

you want to debug and which debugger you choose to 

use, there will always be some common features that 

every debugger will offer. For instance, every debugger 

will provide ways to do the following:

• Connect to the target hardware

• Download the software programming on the 

host system

• Allow start, stop, and step through program 

execution

• Dump memory and register contents

• ODM/OEM hardware-based debugging: This approach 

is independent of the target CPU or SoC architecture. 

This method will rely more on utilizing the common 

hardware capabilities that OxM hardware is proving to 

access the underlying hardware resource. For example, 

Closed Case Debug (CCD) is a widely used method on 

all Chrome platforms irrespective of the underlying 

SoC architecture like ARM, AMD, or Intel. Typically, 

hardware vendors use the common practice methods 

across CPU designs while creating such common 

hardware debuggers.

Software-based debugging: The idea is to be able to debug firmware 

without any additional cost or hardware-based tools. The most widely 

used debug method in the system firmware development model is to 

utilize the software-based methods or firmware’s own capabilities to 

debug the defects. Firmware development, debugging, and providing 

resolution toward the coding issues has always been one of the most 

time-consuming aspects while working in a product development 
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cycle. Debugging is sometimes a complex affair due to multilayered 

communication between various boot firmware, the host CPU, and the 

underlying IP firmware communication in a multithreaded environment. 

The most common method that developers or debug engineers are using 

to monitor the execution flow is printf. This approach may be useful in 

most cases where the developer is highly aware of all layers of the system 

firmware stack or when the problem is known to a single code block or 

module in question. Keep track of all the different types of problems or 

unexpected dependencies with other components in the firmware stack; 

the system firmware should be equipped with different debug methods. 

This software-based firmware debugging can be further divided into 

subcategories as follows:

• Traditional breakpoints

• I/O-based checkpoints

• Serial messages or serial buffers

• Preboot environments

• Runtime debugging

• ACPI debug message or ACPI buffer

• Windows Debugger (WinDbg)

• GNU Debugger (GDB)

This chapter will present an in-depth overview of system firmware 

debug techniques on embedded systems for the x86 and ARM 

architectures. The topics discussed in this chapter will identify the debug 

methodology used for different microcontrollers as part of the hardware 

block. Additionally, it will present the different ways to debug coding 

issues and show debugging techniques for complex issues such as cache 

eviction, finding the local variable value in a multithreaded environment, 

and techniques to help bring different components of the embedded 

system stack to maturity.
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Figure 4-1 illustrates a typical ARM-based platform block diagram with 

possible hardware components associated with it. The idea here is to show 

the different debug capabilities that each hardware block is permitting. For 

example, the system firmware running on the ARM CPU can use a serial 

UART to debug the CPU, and the embedded controller (EC) ROM can be 

used to debug the EC interfaces such as the battery information, sensor 

values, key sequence, etc. The physical security chip, TPM, can also have 

its own serial console to debug those private registers and have special 

access to the CPU and EC SPINOR as well. A hardware-based debugger 

can be used over Serial Wire Debug Port (SW-DP) to allow accessing CPU 

registers and memory blocks; similarly, a native USB debug interface can 

be used to route CPU, EC, and TPM debug interfaces to avoid dedicated 

debug interface needs on hardware. Other devices such as storage, panel, 

and audio codec firmware need special driver-based access methods that 

can be done using higher-level debuggers like the Windows Debugger 

(WinDbg) or special debug kernel drivers for Linux-like OSs.
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Figure 4-1. Debug view of an ARM-based platform hardware
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Let’s start with a detailed analysis of each debugging method and its 

debug aid in this section.

 Hardware-Assisted Debugging
As mentioned, the most advanced form of system firmware debugging 

is utilizing the hardware capability. Typically, this form of debugging 

is a combination of the hardware interface exposed as part of the CPU 

architecture and a connector on board, enabling the SoC or CPU capability 

using the native firmware and high-level software. In many cases, this 

debugging method requires a debugger and a cross-development 

environment. Based on the complexity of the problem, which requires 

a debug aid, a debug engineer might decide to use this approach over 

traditional ones. Every SoC vendor has their own hardware debugger and 

associated software that can be used while debugging the target hardware. 

The major consideration point in this approach is the cost: the cost 

involved to purchase the hardware debugger, the amount of debug signals 

needed to get routed on the board layout to allow hardware debugging, 

and the purchasing cost of a software license to allow cross-development.

In this section, we will discuss the widely used hardware-based debug 

aids in the system firmware development and debugging process. As 

explained, all the hardware-assisted debug tools can be divided into three 

categories.

• Generic debugging

• SoC/CPU architecture-specific debugging

• OxM hardware-specific debugging

Chapter 4  SyStem Firmware Debugging



234

 Generic Debugging
This method involves investing a higher cost into purchasing oscilloscopes 

like hardware equipment along with other tools. The only consideration 

point is that the cost involved here is a generic investment, so the same 

hardware can be used across different embedded systems.

 Oscilloscope

A traditional misconception around debugging the embedded system 

is that it always relies on the hardware rework to bring out various 

probe points and attach them with an oscilloscope. Debugging with an 

oscilloscope is not a scalable solutions due to various reasons.

• It requires dedicated rework to attach the probe points 

to monitor the signal. The test points might be present 

at different sides of the board, which makes it difficult 

to handle a reworked board efficiently.

• Debugging with oscilloscope has a limited scope; 

hence, oscilloscope users are also equipped with other 

hardware instruments like the following:

• Digital voltmeter

• Logic analyzer

• Protocol analyzer

• The main purpose of the oscilloscope in early 

embedded system development is to discover signal 

anomalies. Typically, the correct expectation from 

hardware validation is to probe around the design and 

to get a sense of whether any anomalies exist.

Figure 4-2 provides a debugging scenario where oscilloscope-based 

debugging is useful for embedded system development cycles. Prior 
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to communicating with onboard third-party components like TPM, a 

touchpad, etc., using a standard firmware routine, if hardware compliance 

ensures the device is meeting its power/initialization sequence guideline, 

would help to avoid any anomalies throughout the embedded system 

lifespan.

Benefits: Figure 4-2 is from a real-life problem that occurs early during 

the boot phase where an oscilloscope is used to verify if the endpoint 

hardware attached to the SoC is able to send the acknowledgment upon 

receiving the CS signal.

Figure 4-2. Verifying signal integrity between Chip-Select (CS) and 
Interrupt while communicating with an I/O Device.
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 Protocol Analyzers

It’s the fact that Modern embedded system designs are getting 

complicated. Devices belonging to the advanced technology families 

like PCIe, USB, NVMe, SATA, I2C, and SPI are getting attached to the 

motherboard design (as shown in Figure 4-1). The protocol analyzers 

are the answer to performing the test solution for these computer buses 

and network communication standards. The protocol analyzer is an 

indispensable tool for embedded engineers.

A protocol analyzer works by capturing the data across the 

communication bus in the embedded system and then displaying it using 

GUI tools. With the help of a protocol analyzer, hardware engineers can 

design an embedded system, while firmware engineers can develop any 

new firmware module for these hardware interfaces listed earlier, and 

validation engineers can test the hardware product.

A protocol analyzer is a combination of dedicated hardware and 

software tools. The hardware captures the data, and the software displays 

the captured data. The hardware block typically needs three-way 

communication such as the following:

• Connecting to DUT: An interface that is attached to the 

device under test to capture the data.

• Connecting to HOST: To show the captured data in 

real time, it needs another interface to the HOST 

CPU. Engineers are using the HOST machine to detect 

the anomalies if any are in the bus communication.

• Input interface: This is an optional interface to attach 

the external devices like USB or Ethernet, which 

emulate attaching the device directly to the DUT.

Let’s take a look at some popular protocol analyzers used during the 

system firmware development and debug phase:
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• USB protocol analyzer: The most commonly used 

communication protocol in the computer machines 

is the USB protocol. The USB protocol analyzer is also 

referred to as a USB sniffer; it is a connection between 

the host computer and the DUT to capture and decode 

raw bus data and event information in a human- 

readable format. This information is useful to identify 

the bus errors.

• I2C protocol analyzer: In embedded system design, 

there are more devices that are getting attached with 

the I2C protocol due to its low power and simple bus 

communication. The I2C protocol analyzer can be 

used to debug any communication issue where the 

slave device address is not known or sees a timeout- 

related error.

• SPI protocol analyzer: This is another commonly used 

hardware interface in embedded systems where the SPI 

protocol analyzer can be used to connect multiple slave 

devices.

• PCIe protocol Analyzer: A PCIe bus is the default 

de facto industry standard for any high-speed 

communication between the CPU and motherboard 

component. Each PCIe specification has its own criteria 

in terms of speed, operating voltage, etc., to meet the 

PCIe compliance test for certification. This tool is used 

to monitor and interpret data transferred over a PCIe 

bus and generate error reports.

Benefits: The protocol analyzer provides output in the form of a 

report that covers the error type, recommendations, and directly captured 

data format. Traditional test tools relied on oscilloscopes for doing such 
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compliance tests, which need manual effort and are eventually time- 

consuming. To reduce the product development cost and to meet a faster 

time to market (TTM), a protocol analyzer is the only logical solution. See 

Figure 4-3.

Figure 4-3. USB protocol analyzer to trace USB bulk transfer

 SoC-Specific Debugging
For embedded system developers and security researchers, a SoC/CPU- 

based debugger is the minimal requirement while debugging. This method 

is capable of providing access to microprocessor registers and system 

memory while the system is operational. There are different SoC debug 

interfaces being explored to allow debugging on different hardware phases 

efficiently. For example, during the early development cycle, because the 

hardware is bare metal, the platform remains open chassis, which makes 

debugging comparatively easier. A more sophisticated form factor design 
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at the later phase of the product cycle makes the debugging harder. Hence, 

SoC vendors are trying to improve the debuggability and validate and test 

the platform’s scope even for the product at the final MP stage efficiently.

This section will provide an idea about all the possible hardware 

debuggers and their control methods across popular CPU architectures.

This debugging process on embedded systems is referred to as cross- 

debugging. Cross-debugging in an embedded system is a development 

model that involves two different computing machines working together. 

The target hardware, which is intended to get debugged, is not supposed 

to have any debug tools installed on it. For this reason, in the cross- 

debugging model, the development host system is where all the required 

debug tools are installed. The software running on a host development 

system that provides access to the target hardware using the standard 

user interface might belong to a different architecture. In a nutshell, the 

debugger is a combination of hardware and software tools that work 

together to provide a user interface. It lets developers harness the benefits 

of the underlying CPU, GPU, and/or APU with a single program.

 Hardware Interface

In a cross-debugging model, a debug communication channel between 

the host and target needs to be established on the target hardware device. 

Figure 4-4 shows a typical debug setup between the host and target hardware.

Figure 4-4. Typical hardware-based debug setup
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The debug port is the interface between the host and the DUT debug 

access port. For embedded systems, the de facto standard for hardware- 

based debugging and accessing the hardware registers is the Joint Test 

Action Group (JTAG). The IEEE 549.1 standard defines a “Standard Test 

Access Port and Boundary-Scan Architecture” for Test Access Port (TAP) 

used for testing printed circuit boards (PCBs). This standard is commonly 

referred to as the JTAG debug interface. Since its origin, the JTAG debug 

interface has become a widely used interface for debugging the system 

firmware. Figure 4-5 shows a JTAG debug probe connected to a CPU. The 

JTAG interface allows access to the various systems on chip (SoC) test 

access ports (TAPs) like CPU and PCH. The JTAG protocol provides a serial 

interface to add to a chip device. The host system running the debug tools 

can use the serial link to reach those TAPs to access memory and registers 

that are running on the target hardware chip logic.

Today most of the embedded devices are equipped with a JTAG port 

to support early hardware debugging and firmware development. The 

JTAG-based debug port doesn’t require any special firmware programming 

to access the TAPs; hence, this mechanism can be used while debugging 

early CPU reset issues and early platform boot stages like SEC and PEI for 

UEFI and bootblock and romstage in coreboot.
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Figure 4-5. Debugger attached to the JTAG debug port

Depending on the specification of JTAG, typically this interface 

supports four PINs as follows:

• TMS: Test Mode Select

• TCK: Test Clock

• TDI: Test Data In

• TDO: Test Data Out

In modern embedded systems, every device is equipped with 

multicore CPU architecture. Hardware-based debugging is absolutely 

necessary to debug CPU features such as SGX, VMX, etc. In such a 

multicore boot environment, hardware debuggers should be capable of 

halting all possible cores using a single JTAG scan chain. Figure 4-6 shows 

a daisy-chained technique that CPU designers can use where the output of 

the one core is acting as the input to the next core.
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Figure 4-6. Daisy-chained JTAG interface for multicore CPU 
architecture

Different SoC vendors are utilizing this JTAG interface to create their 

own hardware debug tool.

• The Intel architecture has with different hardware 

debuggers for open-case and closed-case debugging 

using the JTAG interface.

• ARM architecture processors come with JTAG 

support as well. Sometimes it supports another debug 

interface with a lower PIN count such as serial wire 

debug (SWD).

eXtended Debug Port

The traditional way to do hardware-assisted debugging on Intel platforms 

is to use a proprietary 60-pin connector known as eXtended Debug Port 

(XDP), an extension of the JTAG specification. XDP communications are 
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based on the physical connectivity assumption that the host machine 

running the debugging tools is a closed case but the target hardware under 

test is an open case. The XDP pod sits between those two layers, as shown 

in Figure 4-7. The host machine running the debug tools is connected 

via a USB interface. The debugging tool workflow passes through the 

proprietary USB protocol to the XDP pod, where the XDP pod is designed 

to translate the host tool workflow into JTAG probe mode. The DUT side of 

the pod is directly connected to a specific debug port on the motherboard. 

The debug port has access to all TAPs that are available in the SoC, CPU, 

and PCH. This method of hardware debugging is expected to expose 

more debug signals on the motherboard or silicon products; hence, these 

XDP transports are primarily used in open cases or during early product 

development.
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Figure 4-7. JTAG-based open and closed case debugging

Direct Connect Interface

Over time, more sophisticated devices and smaller form factors have 

challenged the SoC side to have a simpler debug hardware interface with 

the same capabilities. Also, open-case debugging may not always be the 

scalable solution for the product development life cycle. Direct Connect 

Interface (DCI) is the solution for such problems where the assumption 

is that both sides of the debugger are now enclosed systems. On the 
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host side, it still uses the same connection as XDP, but on the DUT side, 

it connects to the JTAG interface using a new transport layer named 

Embedded DFx Interface (Exl). Exl works as a bridge behind the USB 

controller, which is responsible for passing the debugging tool workflow 

to the target via the proprietary USB protocol. In this mode of debugging, 

the control and data pass through the Exl bridge to gain access to JTAG and 

probe mode.

The primary goal here is to allow debugging closed-case OxM 

platforms like sealed tablets, smartphones, laptops, etc., where debuggers 

don’t need to access to the XDP header on the motherboard. Figure 4-7 

provides the high-level architectural difference in closed-case compared to 

open-case debugging.

Serial Wire Debug

On embedded systems the JTAG interface is the default standard for 

attaching debuggers. The major drawback in this protocol is the higher 

number of signals, which may not be possible for smaller and compact 

form-factor hardware. To solve this problem on microcontrollers with low 

pin counts, an alternative debug interface was created known as Serial 

Wire Debug (SWD). SWD uses only two wires, a clock wire and a data wire. 

The connector pins are as follows:

• SWDCLK: Serial Wire Debug Clock signal sent by 

the host.

• SWDIO: Serial Wire Debug Input Output is a 

bidirectional signal used to carry data between the host 

and debug port. The data sent by the host is getting 

sampled at the rising edge and sampled by the debug 

port (DP) during the falling edge of the SWDCLK signal.

Figure 4-8 provides an architecture overview of the SWD interface and 

access mechanism.

Chapter 4  SyStem Firmware Debugging



246

Figure 4-8. SWD architectural overview in multicore CPU 
environment

Unlike the JTAG interface, which uses a daisy-chain topology to 

connect multiple debug components, the SWD interface uses a bus called 

Debug Access Port (DAP). The external debug interface connects to the 

DAP through a DP. There are three different debug ports available to access 

the DAP.

• JTAG Debug Port (JTAG-DP): This is similar to the JTAG 

interface and protocol to access the access ports (APs).

• Serial Wire Debug Port (SW-DP): This uses the SWD 

protocol to access the AP.

• Serial Wire/JTAG Debug Port (SWJ-DP): This allows 

external debuggers to attach to SoC using either 

JTAG or SWD DP. It provides a mechanism to select 

between the JTAG and SWD interfaces. It allows an easy 

migration between the JTAG and SWD interfaces where 
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SWDIO and SWCLK can be overlaid on the JTAG TMS 

and TCK pins.

Multiple access ports can be attached to the DAP. This APs can further 

access different debug components, for an example:

• JTAG access port (JTAG-AP): This allows access to JTAG 

equipped cores.

• Memory access port (MEM-AP): This provides access 

to system memory, bus-based debugging, and device 

registers such as AMBA Advanced High-performance 

Bus Access Port (AHB-AP) or AMBA AXI Access Port 

(AXI-AP) or AMBA Advanced Peripheral Bus Access 

Port (APB-AP)

 Software Interface

After understanding the different hardware interfaces to connect hardware 

debuggers between the host system and target device for debugging, it’s 

time to take a look at different debugging tools provided by various CPU 

vendors while accessing the debug ports to get into system memory or 

registers.

The first step in this cross-debugging setup is to have the required 

debugging tools installed on the host machine. Typically, every SoC 

vendor provides the flexibility of installing the debugging tools on all 

leading operating systems. Debugging the system firmware requires access 

to various different debug components like CPU registers, device registers, 

system memory and local variables, etc. A cross-debugging session with an 

integrated development environment (IDE) would make it very simple.

On AMD platforms the debugging is done through CodeXL, whereas 

on the Intel architecture, it’s the Intel System Debugger, and on the ARM- 

based platform, the ARM debugger as part of ARM Development Studio is 

used for debugging the embedded systems.

Chapter 4  SyStem Firmware Debugging



248

CodeXL

CodeXL is the comprehensive tool suite used on AMD-based platforms 

to access the CPU, GPU, and APUs with a single program. It includes 

powerful GPU/CPU/APU debugging and CPU and GPU profiling as well. It 

works as a stand-alone application on both Windows and Linux OS.

After downloading the installer package on the host system and 

installing the package, developers can start using CodeX. The CodeXL GUI 

window should appear as Figure 4-9 with debug explorer view notes.

Figure 4-9. CodeXL debug mode: no project loaded

The CodeXL debugger will allow developers to access the runtime 

behavior of the target hardware based on the control programming 

buttons while debugging.
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These controls are as follows (left to right): Debug Mode, Switch to 

Profile Mode for GPU, Analyze Mode, Start, Pause and Stop Debugging, 

Step In, Step Over, and Step Out.

In order to perform source code based debugging, you need to connect 

the target device and load the debug symbols to map the program running 

in the target device memory to its original source file. Figure 4-10 shows 

the source code view after starting the debugger program as described 

earlier and then hit the Break button to interrupt it program execution to 

inspect the current execution state (i.e., memory view, register view etc.).

Figure 4-10. CodeXL source code view

Intel System Debugger

The Intel System Debugger is the GUI-based system software debugger 

to allow access to the system state, processor registers, platform device 

registers, and system memory via a JTAG-based hardware interface. The 

debugger GUI provides complete control over the debugging process by 

allowing the basic functions such as stepping in, stepping through, and 
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displaying memory by clicking the menu toolbar button. The GUI also 

supports source code debugging after loading the symbols files of the same 

program running into the target hardware memory.

Figure 4-11 shows the options to connect the target hardware debugger 

after loading the Intel System Debugger. After successfully connecting 

with the target hardware, the debugger command will modify from xdb_D> 

to xdb_R> unless the developer uses the following control programmer 

buttons to pause the execution on the target system:

 

These controls are as follows (left to right): Connect, Disconnect, Load/

Unload the debug symbols, Reset the target system, Start, Pause and Stop 

debugging, Step In, Step Over, and Step Out.

Figure 4-11. Intel System Debugger: connecting the debugger
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The Intel System Debugger also allows source code–level debugging 

for any bootloader, even coreboot, which is an open source firmware 

project. To start debugging coreboot with the Intel System Debugger, 

developers need to load the symbol files manually. Figure 4-12 shows the 

default loading process by selecting File ➤ Load/Unload Symbol File after 

halting the target.

Figure 4-12. Intel System Debugger: loading the symbol files

After loading the necessary .debug files, you can start debugging 

coreboot. Figure 4-13 shows how to debug coreboot using the Intel System 

Debugger where developers can make use of the source code viewer to 

view the assembly code, CPU registers, local variables, memory dump, and 

access to the global descriptor table (GDT). Developers can make use of 

the debug console or directly override the registers or memory values.
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Figure 4-13. Intel System Debugger: source code debugging

Arm Debugger

Arm Debugger is capable of providing a GUI-based environment that 

allows users to debug the complex SoC bringing-up scenarios and debug 

multicore environments like symmetric (SMP) and asymmetric (AMP) and 
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also heterogeneous systems. Figure 4-14 provides a high-level overview 

of ARM DS-5, a powerful development toolkit with an IDE for ARM-based 

processors, an ARM compiler, support for a simulation model for software 

development without the target hardware, streamlined tools for analyzing 

software performance, JTAG debug, and trace support.

Figure 4-14. ARM-DS5: development studio

All these debugging tools are the same in terms of the underlying 

capabilities such as the register access, memory access, etc. Here is a list 

of common semantics used by different debuggers irrespective of CPU 

architecture:

Debugger 
Features

Description

Connection type all debuggers will give you the option to connect to the target 

using different methods, for example single-core and multicore 

access using the Jtag daisy-chain method and SwD star 

topology. the idea is to halt all available cores using a single 

command.

(continued)
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(continued)

Debugger 
Features

Description

Loading program most debugging sessions are focused on debugging some type 

of program. this process might involve loading a program into 

the target device, or the target is already loaded with a program 

while debugging connects or loads the same program on the 

host side to allow source code debugging. in most system 

firmware debugging processes, the SpinOr already has the 

program preloaded, and in the debugging process either the 

SpinOr is mapped into system memory or the system firmware 

is responsible for copying them into memory.

reset target being able to reset the target hardware is the minimum 

expectation from a hardware debugger. allowing the target to 

reset will help to restore the target to a known working state. the 

Cpu architecture-specific part is the reset mechanism, which is 

different across different SoCs.

run control most debuggers provide run control options such as start, pause 

or stop, step in, step through, and step out. these options will 

impact the state of system registers, memory, local variables, 

etc.

breakpoints almost all debuggers are capable of setting breakpoints. there 

are two types of breakpoints that developers can use while 

debugging.

•  Hardware breakpoints: Special hardware registers are used to 

create logic that halt the Cpu execution.

•  Software breakpoints: it’s much easier to create software 

breakpoint by adding an assembly instruction.

implementing breakpoints on embedded systems is Cpu 

architecture specific.
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Debugger 
Features

Description

watcher also referred to as watchpoints, this is a feature that many 

debuggers provide to set a watchpoint on a particular memory 

value or i/O port value. execution on the target system will 

autobreak upon hitting the watchpoint either on memory or on 

i/O watched addresses.

Semihosting Some custom debuggers provide this option where the target 

hardware can make use of i/O facilities on the host machine. 

For example, a program running on the target machine will use 

the host system console out to redirect the console message. 

this feature is useful while doing remote debugging where all 

required outputs are coming into single units applicable on the 

host system.

registers, 

memory (system 

memory), special 

bus like pCi, 

amba, etc.

these allow access toward all possible Cpus, pCh registers, 

system memory, and special bus architecture. Depending on 

access points, the debugger will allow you to view and modify 

the system memory and registers.

Low-power mode 

debugging

Debuggers are equipped with a special mode when the OS 

has put the system into lower power mode and all cores 

are in power-down mode. the other low-power, always-on 

microcontroller aps can be used to monitor limited device 

registers without impacting the device’s operational state.
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 OxM-Secific Debugging
The major drawbacks in SoC-specific debugging are the cost of hardware 

debuggers, usage of proprietary software tools (in many cases, available 

only under nondisclosure agreements), and lack of applicability of these 

in cross-architecture debugging. To solve this problem, many ODM/

OEMs have come up with more generic approaches that can be used for 

hardware-based debugging even on cross-architecture platforms. This 

section provides an overview of a few low-cost, handheld debug tools.

 AMIDebug Rx

System firmware developers have been relying on checkpoint cards to 

debug early boot stages where the serial console is not available. This 

debug method is tightly coupled with open-case debugging where a PCI- 

based card is attached to the motherboard. AMIDebug Rx is designed as a 

replacement for the PCI port 80 POST checkout card and makes port 80–

based debugging a scalable solution on closed-case devices as well.

AMIDebug Rx is built around the debug port feature on USB 2.0 EHCI 

controllers. To enable this mode of debugging, system firmware is needed 

to program USB 2.0 controller PCI configuration space and implement 

base address register (BAR) address space for communication. Typically, 

system firmware has a native USB 2.0 debug driver that uses the “USB 

debug port” to transmit the checkpoint data on the device.

 XHCI Debug Capability

The XHCI debug capability (Dbc) is an open specification part of the 

XHCI host controller that allows low-level system firmware debugging 

over USB without any additional cost. Figure 4-15 shows the Dbc interface 

connecting two systems; one system is the debug host and another is the 

DUT as the debug target. After the Dbc is initialized, it will present the 
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device target as a debug device through a debug USB port. This method 

can be useful to replace the proprietary UART implementation on different 

motherboard designs.

Figure 4-15. Dbc connection between debug host and target

Figure 4-16 shows an example of the Dbc software architecture, which 

is completely independent of the XHCI interface that is typically developed 

by system software for other USB device-class communication.
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Figure 4-16. Dbc debug software stack

The USB debug application is running as part of the debug host. 

The debug host provides a USB debug capability class driver that will 

communicate with the device target after the debug device is enumerated. 

At a high level, the debug device can expose all its debugging capabilities 

as part of the debug driver. The debug capability driver is expected to 

be loaded immediately after power-on to let the system firmware debug 

process use this method.
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 Closed Case Debug

Legacy Chrome OS devices were using a custom debug header known as 

Servo to access the CPU and EC serial console, SPINOR, etc., in a generic 

way across cross-architecture platforms. Newer Chrome OS devices have 

introduced a multipurpose secure microcontroller, referred to as H1 and 

running an embedded OS called Cr50. The debugging method using Cr50 

is called closed-case debug, which replaces the need to have a dedicated 

servo header to allow access to the CPU, EC UART, and SPI interface on the 

device under test.

The Chrome OS devices and H1 microcontroller are communicating 

using a custom USB Type-C cable called SuzyQ. The debug architecture 

has been built around the USB Type-C specification. Figure 4-17 shows the 

debugger architecture and communication flow.
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Figure 4-17. CCD accessing the CPU and EC UART

To put the Cr50 into the debug mode, the SuzyQ cable needs to 

connect to Chrome OS devices, and users need to specify the physical 

presence. The H1 includes two pins that can detect the debug accessory 

signature on the CC1 and CC2 pins. After detection, Cr50 enables a USB 
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full-speed USB 2.0 slave interface that connects to the SBU pins on the 

USB-C connector. Cr50 makes several USB endpoints available to the host 

to communicate with the consoles. For example, Figure 4-17 shows the 

access of the CPU and EC UART. In addition, Cr50 also allows access to the 

H1 console.

 Software-Assisted Debugging
The most cost-effective debug method in the system firmware 

development model is utilizing the software and firmware’s own 

capabilities without being dependent on hardware debuggers. Adapting 

hardware debuggers has its own difficulties during later stages of SoC and/

or product development where many CPU interfaces are required to be 

disabled by default; hence, it needs a special firmware image to enable all 

the required debug interfaces. In many cases, the timing-related issues 

are not possible to replicate with a hardware debugger attached due to 

an induced delay in the debug workflow between the host to the target 

access points. For such reasons, firmware developers need to rely on their 

traditional debugging techniques and skill sets to identify a defect and 

provide a solution.

This section will highlight a few known good debugging methods that 

developers are using on embedded systems and that are even applicable 

across architectures.

 Traditional Breakpoint
Traditional breakpoints are the most common debugging technique being 

used developers to track the code flow. While debugging the unknown 

defects, every developer is trying to get ahold of the code flow without 

adding any new piece of code. There are different ways to introduce 

breakpoints.
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Usage Method to Apply a Breakpoint

in 

assembly 

files

the most difficult code block in system firmware to debug is the 

assembly instructions. the most common usage of the breakpoint in 

assembly code is jmp.

the syntax for Jmp is JMP <label>. the level specifies an address to 

which the code will jump upon execution. in this case, . specifies the 

current address; hence, this special symbol works as an infinite loop unless 

the developer overrides the program counter (pC) or instruction pointer (ip).

in C Files it’s much easier to apply the breakpoint in a C-based programming 

file. Developers can either choose to generate a break on the Cpu or 

execute an infinite loop.

void CpuBreakpoint (void)

{

  __asm__ __volatile__ ("int $3");

}

void CpuDeadLoop (void)

{

  volatile uint32_t  Index;

  for (Index = 0; Index == 0;);

}

a debugger may be used to skip past the loop and continue the code 

execution if needed.

 I/O-Based Checkpoint
Another traditional and popular debug technique for system firmware 

debugging without impacting much of the program execution flow is POST 

codes, also known as progress codes. The I/O ports on the X86 platform, 
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0x80 and 0x81, are used for such debugging while checkpoint cards can 

be either a PCI add-in card or an onboard LED display or rely on EC to 

sample the POST codes at regular intervals. Every BIOS vendor has their 

own predefined error codes or POST code implementation to identify the 

underlying system firmware block if executed.

Usage Method to Apply an I/O Checkpoint

in 

assembly, C 

files

implementing the i/O checkpoints depends on the underlying assembly 

instructions due to an out operation to write into the legacy port. put 

any byte value intended to write into CONFIG_POST_IO_PORT(Port 

0x80) into aL.

movb    $value, %al;

outb    %al, $CONFIG_POST_IO_PORT

in aSL files this method helps debug runtime communication issues between the 

OS and firmware layer. For example: performing sleep state transitions 

(S3 to S0 and vice-versa). while debugging, aCpi source code (aSL) 

writes into the debug port (address 80h) using aCpi operating region. 

here is the code snippet to illustrate this operation.

OperationRegion(PRT0,SystemIO,0x80,1)

Field(PRT0,WordAcc,Lock,Preserve)

{

  P80B, 8

}

Method(D80H,1,Serialized)

{

  If(LEqual(Arg0,0))

  {

    Store(Arg0, P80T)    // Write into the Port 80h

  }

}
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For hybrid system firmware development models with integration of 

closed-source binary blobs (FSP), it’s important to clearly understand the 

postcode debugging model for FSP.

FSP outputs 16-bit postcode to indicate which API and inside that 

which module is getting executed. The postcode is in the following format:

Bit Range Description

bit 15 : bit 12 (X) indicate the phase/api under which the code is 

executing

bit 5 : bit 18 (y) indicate the module

bit 7 (ZZ bit 7) reserved for error

bit 6 : bit 0 (ZZ) individual codes

Figure 4-18 represents the 16-bit postcode usage model in FSP.

Figure 4-18. FSP Postcode block diagram
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 Serial Message or Serial Buffer
The most trusted debugging method on embedded systems is using 

printf and redirecting the output over the serial UART of the processor. 

Based on the motherboard designer, there could be different hardware 

interfaces that the system firmware needs to provide while making use of 

serial UART. Here are some examples:

• Legacy CPU UART ports: On an X86 platform, this 

makes use of 0x3F8 or 0x2F8 legacy ports to get serial 

consoles. System firmware (in this case coreboot) uses 

CONFIG_DRIVERS_UART_8250IO and 8-bit I/O-based 

serial drivers to set up the console and read and write 

operations.

• PCH UART ports: Another alternative for serial console 

debugging is using MMIO-based UART controllers 

on modern chipsets. System firmware (in this case 

coreboot) uses CONFIG_DRIVERS_UART_8250MEM_32, 

which is 32-bit MMIO access for setting up the console 

for debugging.

• UART over SuperI/O: Many motherboards designed 

with SuperI/O controllers also provide access to serial 

ports for debugging. The developer needs to select 

the applicable driver for the SuperI/O controller. For 

example, the delta lake OCP platform is using Aspeed 

SuperI/O and hence enabling the corresponding driver 

by selecting CONFIG_SUPERIO_ASPEED_AST2400 Kconfig 

(for coreboot as the underlying boot firmware).

While developers are comfortable using the serial console for 

debugging and redirecting various messages to the serial console using 

printf, they don’t even realize the problem that this debugging technique 

often causes. Many times developers complain that the issue is seen with 
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only the release build but not with the debug binary. They are ignorant 

about an unseen delay due to redirecting those debug message characters 

into a serial port using native serial UART driver implementation. In 

a single-threaded environment, calling a serial write method would 

eventually pause the execution until every intended debug character 

is successfully transmitted to the serial console. As all microcontrollers 

inside the SoC are running their own firmware, such a delay might be 

useful for restoring their state into a good working condition compared to 

a release binary, without any delay in execution.

The best method to overcome this problem is to rely on a serial buffer 

rather than a serial message. System firmware would create a reserved 

memory during POST, and a native serial write implementation would 

write into that memory rather than writing to the serial port. One would 

argue that it is a waste of system resources if the system hangs prior to 

fetching this serial buffer. The counter argument is that using some basic 

hardware debugger functionality to retrieve this memory is the best 

solution to reduce the gap between the debug and release system firmware 

binaries while debugging a defect.

 Preboot Environment
All modern system firmware is equipped with a basic preboot environment 

to provide minimum access to CPU registers, system memory, and chipset 

registers prior to booting to the OS such as EFI Shell, Embedded Boot 

Loader (EBL), u-root console, depthcharge console, etc. The preboot 

environment serves as an important debug vehicle to narrow down an 

issue between the system firmware and OS. It provides open access to 

all chipset registers without connecting any hardware debugger prior 

to boot to OS; hence, developers can dump the required registers in the 

firmware space to ensure the recommended hardware registers have been 

programmed correctly by system firmware drivers.
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 ACPI Debug
The majority of modern operating systems are adhering to the Advanced 

Configuration and Power Interface (ACPI) specification. This forces the 

adaptation responsibility on the underlying system firmware as well. The 

ACPI specification has introduced a whole new language called the ACPI 

Source Language (ASL) to implement the required communication in 

the firmware layer. Debugging this layer is more challenging because of 

its usage model. For example, the ASL implementation doesn’t conform 

with native C-based serial libraries that typically get used across firmware 

debugging. The communication is at runtime level and hence can’t make 

use of boot services data or protocols. Developers need various different 

techniques to debug ACPI source code.

Method Details

Serial 

console

the system firmware needs to implement a whole new serial i/O 

function in aSL so that the runtime firmware drivers can make use of it 

while debugging. coreboot has a unique implementation called aprt and 

aDbg in ueFi to redirect any debug string to serial.

Serial 

buffer

this method overcomes the limitation of the serial console 

implementation due to its serialized implementation and might cause 

anomalies while loading the kernel driver. the system firmware reserves 

runtime memory so that both system firmware and OS aCpi driver can 

access it.
(continued)
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Method Details

Debug 

using the 

kernel

the aCpi Component architecture (Ca), Linux aCpi core, and aCpi 

drivers can combine to generate the debug output. Kernel developers 

can enable the CONFIG_ACPI_DEBUG Kconfig to start getting more 

advanced options for acpi debug.

For example, use the following command-line argument to enable all 

acpi debug output:

acpi.debug_layer=0xffffffff acpi.debug_level=0x2

 Windows Debugger
Windows Debugger (WinDbg) is a free, powerful debugger available as 

part of Windows OS to allow debugging the kernel, user mode drivers, 

and applications. It also provides the provision to load and analyze the 

crash dump. WinDbg is a host-based software debugger and is capable of 

working in different modes based on developers’ needs. In stand-alone 

mode, WinDbg can be used to debug an application or kernel driver after 

loading either the executable or the driver source files.

Figure 4-19 shows an example of how to use WinDbg to debug an 

application after importing the debug symbols (PDB) from the Microsoft 

debug server. WinDbg is also a useful tool to debug the DUT using USB, 

a network, or a serial interface. This method is used frequently to debug 

early kernel hang or blue screen of death (BSOD), a normal phenomenon 

on Windows devices. Figure 4-20 shows the required configuration 

changes both at the DUT and host sides to enable kernel debugging 

over USB.
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Figure 4-19. Debugging Windows applications using WinDbg

Follow these steps on the DUT side to configure for debugging:

 1. Press Windows Key+R to open the Run box.

 2. Type msconfig to enable the debug configuration.

 3. Select the Boot tab and then select “Advanced 

options.”

 4. Select the Debug check box.

 5. Select the Debug Port options, either COM and 

USB. In the case of a USB interface, specify the USB 

target name. See Figure 4-20.
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Figure 4-20. Kernel debug mode using WinDbg

Follow these steps on the Host side to configure for debugging:

 1. Open WinDgb.exe.

 2. Go to the File menu and select Kernel Debugging.

 3. Specify the same hardware interface and name if the 

target debug port is USB.

Now reboot the DUT to start kernel debugging; developers will be able 

to see the kernel modules are getting loaded using the host system debug 

console.

 GNU Debugger
The GNU Project Debugger (GDB) is a command-line debug tool that runs 

on Linux and other Unix-like embedded operating systems. Figure 4-21 

shows a GDB session.
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Figure 4-21. GDB: command-line interface

GDB offers an extensive set of features including debugging other 

software or executable files, accessing the register contents to help 

optimize the program, inspecting the usage of variables and altering 

those values at runtime, stopping the program execution and performing 

step operations, adding breakpoints, analyzing the crash, and allowing 

remote debugging between DUT and host systems using either a network 

or a serial interface. Independent system firmware modules are being 

developed using Assembly, C, Go, and Rust-based languages and can 

make most use of GDB during the early development stages to optimize 

the development cost and increase the product quality.
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 Summary
This chapter provided detailed information about the popular hardware 

and software debuggers and their usage on cross-architecture platforms 

while debugging a defect. It also provided some guidelines and tips on how 

to identify a problem and choose the right debugging method between 

hardware-assist and software-assist after considering the cost factor, the 

stage of product, and the criticality of the defect. Based on my experience, 

during critical debugging, debug engineers spend the most time trying to 

figure out the best method to attack the problem.

This chapter was a good starting point for developers and embedded 

system engineers to understand the underlying architecture of various 

hardware debuggers like JTAG and SWD and their interfaces across 

different CPU architectures. This information might be useful while 

migrating the system firmware development across various SoC 

architectures.
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CHAPTER 5

Security at Its Core
“It takes 20 years to build a reputation and few minutes of 
a cyber-incident to ruin it.”

—Stephane Nappo

Today most computing devices (laptop, smart phone, smart appliances, 

etc.) are connected to the Internet, which poses challenges for the device 

manufacturers because they have to think about platform security. For 

any device, platform security is a combination of hardware, software, 

and associated configurations. Users are always equipped with these 

devices, and they are used to perform financial and/or personal data 

transfers. Hence, the security specification demands continuous evolution. 

Firmware, being closest to the hardware, assumes the primary role of 

enforcing the security configuration because it is within the Trusted 

Compute Boundary (TCB). Firmware is also responsible for abstracting 

the operating system from the underlying hardware, which provides more 

reason to ensure that the communication channel is secure.

This chapter focuses on designing the boot firmware, keeping security 

in mind. As the industry is moving toward more cloud-driven services, 

we need to ensure that the firmware communication is secure within the 

firmware space and even from the OS to the firmware using trusted APIs.
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A typical computing system handles a variety of assets owned by 

users, software vendors, OS vendors, OEM vendors, and silicon vendors. 

It is essential that the components in the computing system are trusted to 

handle these assets, lest these assets are compromised.

The building blocks of the computing system can be categorized into 

the following groups:

• Silicon or hardware (hardware): This includes the 

system on-chip or micro-controllers or application- 

specific integrated circuits (ASICs).

• Firmware (firmware): This is the first piece of code 

executing on the hardware and is essential for 

configuring and operating the hardware. Typically, 

without the firmware, the hardware device will not 

operate.

• Software (software): This is the component on the 

computing system through which users typically 

interact with the hardware. The firmware is a subset 

of the software; the firmware has very limited or no 

interactions with the user.

Attackers are constantly looking for vulnerabilities in all areas of a 

computing system for information theft, espionage, ransom, sabotage of 

nation-state security, etc. Thus, it is paramount that security objectives 

are built into every facet of a computing system to ensure that complex 

systems can be built from the ground up with the appropriate security 

requirements. While developing a product, the security cannot be an 

afterthought. Security is fundamental to any computing system and needs 

to be designed into the entire stack of a computing system (hardware, 

firmware, and software).
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As noted, as hardware and software stacks become more robust, 

attackers are increasingly researching vulnerabilities in firmware stacks. It 

is more effective to hide exploitation tools such as rootkits in the firmware 

because the firmware on a computing system is typically not updated 

frequently and antivirus tools are unable to scan the firmware components 

in a system. A rootkit in the firmware can be used to compromise 

information such as memory contents, system storage contents, etc., and 

can effectively alter the operation of the system by compromising the 

hardware configuration and controlling the software that executes on 

the computing system. There are several published reports, papers, and 

articles on firmware attacks.

A secure computing system implies that the hardware, firmware, and 

software can all be trusted to handle various assets as per the defined 

security objectives. Starting from the foundation of the computing system, 

the hardware is considered to be immutable. Attacks on the hardware 

requires physical access to the computing system. Software (e.g., an 

operating system, word processor, etc.) is loaded after the hardware comes 

up and the firmware is executed. Continuing to build on this foundation, 

assuming the hardware is immutable, it is important that the firmware 

be secure to ensure that the rest of the stack loaded by the firmware is 

also secure.

Facts hardware can be attacked using physical attacks such as 
fault injection through voltage/thermal differentials, etc. you can learn 
more about physical attacks from the bibliography.

attacks on software by exploiting bugs, etc., is beyond the scope 
of this book. you can learn more about software vulnerabilities and 
security from the bibliography.

This chapter focuses on aspects of the firmware security relevant for a 

secure computing environment.

Chapter 5  SeCurity at itS Core



276

 Revisiting the Definition of Firmware 
with a Security Mindset
Typically, a platform (as shown in Figure 5-1) consists of several hardware 

components that may or may not be equipped with underlying firmware. 

As discussed earlier, the components without firmware are just hardware 

blocks and considered to be immutable. For the components with 

firmware in them, the firmware can be obtained from various nonvolatile 

storage attached to the computing platform such as system storage, 

platform boot flash, component-specific flash on the board, components 

in-package, or components on-die flash. During the boot or runtime of 

the computing system, the hardware component powers on and retrieves 

the underlying firmware from the nonvolatile storage and executes this 

firmware. Once the firmware executes, any additional high-level software 

like an operating system is loaded by the firmware and jumps into it. The 

software stack is used by the user to interact with the hardware and access 

resources on the computing device.
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Figure 5-1. Block diagram of a typical platform with controllers and 
firmware storage components

 Why Is Firmware Security Required?
As described earlier, there are various assets on the computing system 

that are required to be protected from unauthorized access. The software 

stack is used to access these assets. Hence, there is a requirement to 

ensure that only a “trusted and known” software stack always executes on 

the computing system. The software stack to execute on the computing 

system is controlled by the firmware stack, as explained in the book System 

Firmware: An Essential Guide to Open Source and Embedded Solutions. 

Figure 5-2 illustrates a simple flow diagram showing the dependency. As 

shown in the figure, the ROM is responsible for bringing up the firmware, 

and the firmware in turn is responsible for bringing up the software.
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Figure 5-2. Simple block diagram showing the flow of booting up in 
a typical computing system

The ROM is considered hardware; attackers may potentially be able 

to attack the ROM to control the hardware. But they may do so at the cost 

of having the computing system “fail” because to get to the ROM and 

tamper with it, the attacker has to conduct a deep physical attack. On the 

other hand, if the attacker is able to control the software by attacking the 

firmware, then they can get control of the computing system.

In addition to the assets accessible by the software, the computing 

system also includes vendors’ (OEM, silicon/hardware) assets and 

configurations like boot configuration, system debug configuration, 

security configurations, etc., that need to be protected from adversaries. 

These assets are typically controlled by the firmware executing in 

the system.

Furthermore, as the software stack (e.g., like operating systems) 

becomes more robust, attackers are continuously exploring other areas in 

the computing system to exploit vulnerabilities. The firmware stack is the 

next logical target for adversaries to hide malicious code and also get more 

control of the entire system, as described in System Firmware: An Essential 

Guide to Open Source and Embedded Solutions.

Thus, the security of the firmware components in a computing system 

is a fundamental requirement. Without the right implementation of 

proper security protections for firmware components, it is not possible to 

ensure assets can be protected from adversaries, and more importantly, 

potentially attackers can take over the entire system easily.
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 Threats and Issues

The lack of firmware security can potentially expose the computing system 

to various vulnerabilities. The risks similar to the vulnerable software stack 

apply. For example, adversaries can do the following:

• Spy on activities in the computing system

• Siphon data from the computing system

• Access and control computing system remotely

• Potentially cause bodily or monetary harm (e.g., attacks 

on utility grid, ransomware, etc.)

• Make the computing system inoperable

There are many examples of attackers taking advantage of firmware 

vulnerabilities to attack a computing system and the environment it is 

located in. A few examples are described in the “Reference” section of the 

book. The general perception is that firmware is easier to attack because 

firmware vendors do not develop firmware with a security mindset from 

the bottom up. Furthermore, monitoring and controlling firmware security 

is a difficult problem. Hence, it is important to ensure that every firmware 

component in a computing system is kept up-to-date based on the 

firmware vendor’s recommendations.

 Security Primer

In this section, we provide a short overview of the security concepts used 

to describe the security design principles for firmware security.

Terminology

For the examples in this section, we will use two users, Alice and Bob. 

These two parties want to exchange information securely. The attacker, 

Eve, wants to access the information, modify the information, replay the 
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information, pose as an imposter, and so on, to affect the secure channel of 

communication between Alce and Bob.

Integrity

Figure 5-3 shows a scenario where Alice wants to send data (D) to Bob but 

wants to ensure that when Bob receives D, Bob can verify that D has not 

been tampered with. This security property is called integrity, and it can 

typically be achieved using techniques such as message authentication 

codes (MACs). The MAC of data D is computed and transmitted along with 

the data by Alice. Bob then computes the MAC of the data upon receipt 

of the message and compares that with the transmitted MAC by Alice to 

ensure that the integrity of data is maintained during the transmission.

Figure 5-3. Integrity property for data transfer from Alice to Bob

Confidentiality

In Figure 5-4, Alice wants to send data D to Bob and wants to ensure that 

only Bob can read the clear-text data D. This security property is called 

confidentiality and is typically achieved using symmetric (or asymmetric) 

encryption techniques such as NIST’s Advanced Encryption Standard (AES) 

algorithms. In symmetric encryption, both Alice and Bob have a key known 

only to both of them. Alice encrypts D using the key to create the encrypted 

message cipher_D, which is transmitted over the channel. Bob uses the 

same key to decrypt the cipher_D text to get access to the clear- text data D.
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Figure 5-4. Confidentiality property for data transfer from Alice to Bob

Authenticity

As per Figure 5-5, Bob wants to ensure that the data received is actually from 

Alice and no one else. This is called the authenticity security property and is 

typically achieved by using an RSA signature on the data to be sent by Alice. 

Bob can verify the signature to ensure that the content is indeed sent by Alice.

Figure 5-5. Authenticity property for data transfer from Alice to Bob

Anti-replay

In Figure 5-6, Bob wants to ensure that the data received from Alice is fresh 

and is not a playback of older data from Alice. This is called the anti-replay 

security property, and it is typically achieved by sending a monotonically 

increasing value along with the data sent by Alice. Bob can check if the 
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monotonic value property is valid for every piece of data obtained from 

Alice and determine whether malicious data was injected into the channel 

between Alice and Bob.

Figure 5-6. Antireplay property for data transfer from Alice to Bob

Availability

With the availability security property, Alice wants to ensure that data can 

be made available to Bob whenever Bob makes a request to Alice. This 

property can be designed by ensuring Alice is always available to process 

requests from Bob. Aspects such as loss of connection, loss of power, etc., 

at Bob’s end that are not under control of Alice are out of scope for this 

security property for Alice. See Figure 5-7.

Figure 5-7. Availability property for data available to Bob from Alice
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Anti-rollback

An important security property for computing platforms with firmware 

is the ability to control what version of the firmware is executing on the 

platform. This is important to establish the overall security posture of the 

platform. In this context, it is important to ensure that the firmware always 

executes the latest version as released by the firmware owner, and the 

system is designed such that a rollback to an older version of the firmware 

is not possible. This security property is called anti-rollback.

Root of Trust

The root of trust is terminology used in this section repeatedly. The root 

of trust can be hardware, firmware, or a software component that is 

inherently trusted and is secure by design. The root of trust provides the 

foundation on which security and trust is built for a system.

Threat Modeling

There are different ways to find security issues in firmware, like static 

code analysis, fuzzing or dynamic testing, penetration or red team testing, 

or just waiting for reports to be filed to conduct further analysis. A more 

formal method for identifying potential security issues is to conduct 

threat modeling. The process of threat modeling allows the designer to 

identify security objectives and assets with security properties and create 

requirements with security as one of the foundations. Threat modeling 

helps the designer understand better the questions of “What is the 

design?” and “What can go wrong?” and “How to mitigate?” and continue 

an iterative process on these questions until certain objectives are met to 

satisfaction.

The key question in threat modeling is “What can go wrong?” This 

question is quite open ended and difficult to address for a typical designer/

engineer. To address this, many formal methods/processes to identify 
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what can go wrong have been created. One such example is the STRIDE 

method, which stands for Spoofing, Tampering, Repudiation, Information 

disclosure, Denial of service, and Elevation of privilege. More details on 

the STRIDE process for threat modeling are available in the “Reference” 

section of the book.

Adversary Modeling

An adversary is defined as any entity not authorized to access or modify 

an asset or who works to defeat any protections on the asset. It is 

important to understand the capabilities of the adversary to understand 

what can go wrong during threat modeling. A rather simple adversary 

(e.g., an unprivileged software adversary) with the following capabilities 

(the adversary model prescribed by Intel) may not have the ability to 

compromise firmware assets as this adversary is unaware of the presence 

of firmware in the computing platform:

• Can read memory mapped into the address space by 

the system software

• Can write memory mapped into the address space with 

the write privilege granted by the system software

• Can execute Ring 3 instructions from memory mapped 

into the address space with the execute privilege 

granted by the system software

Therefore, it is important to understand the right capabilities of the 

adversary and use them for the right threat modeling. Once the adversary 

model is clear, the threat modeling then becomes a question of “What can 

go wrong if the adversary has this capability?” This leads to more clarity 

into threat modeling and aids in defining the right security design to 

mitigate against attacks by the adversary on the assets.

A taxonomy of adversaries based on capabilities is the foundation for 

any security analysis and the appropriate security design.
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Security Assumptions

Assumptions are one of the key parameters of the design of security 

solutions. Security design is based on mitigating attacks on assets; it is 

practically impossible to list all the attacks possible on an asset to begin 

with; hence, a design for security always starts with the key assumptions 

on which the design is created. The assumptions can be aspects like 

“physical attack on the hardware needs sophisticated and expensive 

equipment that this becomes a barrier to attack,” “reverse engineering 

the key for encryption will take enough time that the value of knowing the 

clear text key is lost,” etc.

Approach to Security Design for Firmware

Designing the security solution for a system requires the designer to 

understand various aspects of the system to provide a comprehensive 

solution to address the security issues. This is the same with security for 

firmware on a computing system. The following is a typical approach to 

take to develop the security design:

 1. Understand the system architecture.

 2. Create the list of assumptions on which the security 

design will be based.

 3. Create the list of assets in the system and their 

appropriate security properties.

 4. Create the threat models for the assets.

 5. Create security design to address the threat models.

Obviously, in the context of security, a designer can never provide 

a perfect solution. The security design is not constant and has to 

continuously improve by iterating over steps 2–4. As the designer learns 

more about new attack vectors that modify the assumptions and the threat 
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models, new solutions/technologies have to be created or devised to 

address the new findings.

This section creates an understanding of the security for firmware 

based on the previous approaches.

• Understanding the components in a system that 

contain firmware

• Understanding the threats in scope

• Understanding the assets

• Describing security design concepts that address the 

threat models and continuously assess the design

 Platform Configuration for Firmware
This section will review the basic framework of a computing platform that 

includes firmware for various components in the platform.

A typical computing platform consists of a motherboard with the 

following components on it:

 – One or more system-on-chip (SoC) components

 – One or more microcontrollers

 – Multiple sensors

 – Flash storage and memory devices

 – Cooling units, power supply

 – Input/output devices, etc.

The microcontroller and SoCs themselves may have SRAM in them for 

firmware or software to use for execution. In addition, the microcontroller 

or SoCs may also have flash memory in them either as on-die flash 

memory or on-package flash memory. As described in previous chapters, 
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the firmware for the computing platform is resident either in the flash 

storage on the board or in on-die/on-package flash. Depending on where 

the firmware is at rest, where the firmware executes at runtime, etc., the 

security properties for the firmware is determined.

For example, let’s assume that a certain piece of firmware has 

confidentiality properties, implying that the firmware should be protected 

from being visible in the clear to anyone except the components that are 

allowed to execute the firmware. In this example, consider if the firmware 

is resident in the flash on the motherboard; then this firmware has to be 

encrypted because an adversary with physical access to the system will be 

able to “dump” the content of the flash on the motherboard using simple 

tools such as a “dediprog.” On the other hand, if the firmware was resident 

in the on-die flash, it may not be necessary to encrypt the firmware 

because it is deemed to be more difficult to do a physical attack on the die.

 Firmware with Security Mindset in a 
Computing System
Before we get into the details of what security constructs are required for 

firmware security, let’s first understand what attacks are in scope for the 

discussion and how to address them. Figure 5-8 shows attack vectors for 

various firmware components in the platform. Let’s look at each of them.
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Figure 5-8. Block diagram showing attack vectors in scope for 
discussion

In Figure 5-8, for the callouts marked as 1 and 4, the firmware is 

assumed to be loaded into a controller and executed locally in the 

controller. For the callouts marked 2 and 3, the firmware is stored at rest in 

either system storage or flash storage.

Attack vectors in scope for firmware at rest do the following:

 1. The firmware at rest needs protection from getting 

tampered with by any skilled or unskilled software, 

system software, or firmware. It ensures that any 

attacks like illegal or unwanted firmware updates 

are prohibited from tampering with the firmware to 

brick the system.

 2. The firmware at rest must be able to detect physical 

attack on the firmware in the storage. An attacker 

with physical access to the system may be able to 

modify the firmware directly in the storage; while 
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preventing this attack can be expensive for typical 

computing systems, being able to detect the attack 

is sufficient to ensure that illegal or unwanted 

firmware cannot be loaded into the system.

Attack vectors in scope for firmware at runtime do the following:

 1. The firmware in runtime must be protected from 

skilled or unskilled software/system software or 

firmware tampering the firmware at runtime. This 

ensures that the firmware executes as expected 

and does not cause the system’s security to be 

compromised.

 2. The firmware in runtime must be protected from 

physical attacks; this ensures that attackers cannot 

use physical side channel attacks, probe attacks, 

etc., to modify the runtime firmware and cause the 

system security to be compromised.

To address these attack vectors, the following security properties are 

typically attached to each firmware:

• Authenticity: This security property ensures that 

firmware that executes on a computing system is 

always coming from the right authority.

• Integrity: This security property ensures that firmware 

that executes has not been tampered with by an 

attacker.
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• Confidentiality: This security property ensures that 

firmware cannot be obtained in clear text while at rest 

or during execution. Typically, this security property is 

required for firmware executing in computing systems 

such as set-top boxes, etc., as the cost of compromise 

of the firmware can lead to media content being 

compromised.

• Availability: This security property ensures that 

firmware is always available, so the system can function 

even if the firmware complies with the previous 

security properties but may have bugs causing the 

system to malfunction or stop functioning.

• Access control: This security property ensures that only 

the authorized firmware can access certain resources, 

and other components in the computing system cannot 

access these resources. For example, the fingerprint 

sensor data can be designed to be made available 

only to the security engine firmware and no other 

component in the system.

Typical technologies used to accomplish the previous security 

properties are secure boot, trusted execution environment, firmware 

resiliency, security assurance, etc. The rest of this section highlights the 

design constructs that are typically used and how to achieve security for 

firmware components in a computing system.

Before we delve into the security design constructs, let’s look at a few 

resources required in the hardware to achieve the security properties 

highlighted earlier. Figure 5-9 shows the hardware resources available to 

an embedded engine in a computing system. Note: similar resources may 

be available to the firmware for the application processor as well.
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Figure 5-9. Typical resources available to an embedded engine in a 
computing system

Let’s understand these components in detail.

• Read-on memory (ROM): This is typically known as 

Boot ROM as well. It is a nonvolatile memory that 

contains the boot code, fetched and executed by the 

controller immediately after coming out from reset. 

Ideally, the boot ROM contains a minimal code block 

that requires the controller to come to life. A simplest 

embedded system might only have ROM that is 

sufficient for the platform to complete all the required 

hardware initialization prior to loading the high-level 

software without the overhead of a post-production or 

in-field firmware update.
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Facts National institute of Standards and technology (NiSt) 
publications NiSt Sp 800-147, “BioS protection Guidelines for 
Clients,” and NiSt Sp 800-147B, “BioS protection Guidelines for 
Servers,” address the issue of protecting the integrity of a platform’s 
host processor boot firmware and its update mechanisms.

• Memory: A volatile storage is required to complement 

the memory-restricted nature of hardware controllers 

while coming out from the reset. This is required for the 

runtime execution of the firmware. There are two main 

types of memory: static RAM (SRAM) and dynamic 

RAM (DRAM).

• SRAM: This type of random access memory uses 

flip-flop circuitry to keep the data. Unlike DRAM, this 

memory type doesn’t require periodic refreshing. It 

is typically used for the cache and internal registers 

in powerful microprocessors and on several other 

microcontrollers.

• DRAM: This is most widely used as main memory 

in the computer system. This type of random access 

memory uses memory cells (made of a tiny capacitor 

and transistor) for storing the data. DRAM has to be 

refreshed periodically to avoid data leaking due to slow 

discharge of the capacitors. DRAM memory is much 

cheaper compared to the SRAM and hence more often 

used on computer systems.
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Facts By the nature of its operational model, DraM is a soft target 
for security attack. rowhammer is one such security exploit that 
took advantage of memory cells to possibly change its contents 
by repetitive neighboring cell access that caused leakage in 
their charge.

Figure 5-10 shows the different types of DRAM memory types being 

used on the embedded system.

Figure 5-10. Types of memory used in embedded systems
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• Storage: In computer systems, storage devices are 

referred to as secondary memory. The information 

stored persists across multiple power-cycle, power- 

off, etc., scenarios. It’s also important to highlight 

here that, based on the boot criticality of the firmware 

components, there are many firmware versions that 

reside even in the storage devices like eMMC, NVMe, 

etc. The nonboot critical firmware needs to get loaded 

into the hardware controller using OS software driver 

models rather than pre-boot communication methods. 

For example, the AsoC Linux kernel driver is capable 

of registering the digital signal processing (DSP) and 

firmware.

• Crypto: Hardware-based cryptographic primitives are 

required to accelerate or isolate assets from the other 

resources. The objective of crypto in firmware space 

is to increase the security while ensuring seamless 

firmware updates for the in-field devices. The firmware 

update process involves downloading a binary image, 

which may include code, data, configuration and/

or calibration value, authentication information, and 

other product details, etc. Now a security threat always 

exists on the asset since the update operation has 

initiated; hence, the cryptographic algorithms provide 

the means to protect the privacy of the content and also 

verify the integrity and authenticity.

• I/Os: Logically, at a high level, an embedded system 

can be considered to be separated into two blocks, the 

lower layer and higher layer. Figure 5-11 illustrates the 

high-level system view to understand the I/Os.
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Figure 5-11. High-level system view

In the lower-layer section, the I/Os are typically the external 

components in the motherboard that are initialized/configured by the 

firmware for making it accessible by the higher-level software/applications.

• Fuses: These are the control knobs tuned by the 

hardware vendors (including SoC manufacturers) to 

configure the engine at manufacturing. Depending 

on the design and system requirements, hardware 

vendors allow fuses to be programmed and configured 

by the underlying firmware. These fuses are for 

debugging, manufacturing, managing feature enabling/

disabling requests, etc. Efficient use of these fuses 

while debugging to trace any underlying hardware 

communication. Additionally, these fuses help adhere 

to the security recommendation during manufacturing. 

The fuses allow configuring a particular feature without 

revamping the hardware controller in the factory. 

There are tools to configure the fuse to satisfy the 

end-user requirement. For example, the airport kiosk 
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system utilizes the Intel Next Unit of Computing (NUC) 

without any specific use case for keeping the Image 

Processing Unit (IPU) enabled. Hence, the system 

integrator would have to leverage the advanced tooling 

to turn off IPU features on the target device.

 Access Control

The concept of access control was defined earlier. The goal of access 

control is to ensure that assets are protected from other components 

in the system. For example, in a bank, the safe/locker is not allowed 

to be accessed by any one other than a group of employees. Similarly, 

in a computing system, access control is used to block access to 

unauthorized users.

In the context of firmware security, access control in a system is 

used to determine which entity can access the storage area (i.e., the 

firmware at rest area), access the memory in the controller, access assets 

of the controller, and so on. This access control design ensures that only 

authorized components that are identified by construction are trusted 

by the controller, and the firmware executing on the controller will allow 

access to resources within the firmware. This concept is used as a security 

design concept to protect the resources of the firmware on a controller 

or system.

 Secure Boot or Firmware Authentication

As discussed earlier, the typical boot of a system starts with the ROM, 

followed by mutable code loaded from the storage such as firmware, 

firmware applications, and/or software depending on the controller or 

computing system. The concept of Secure Boot ensures that every piece 

of mutable code loaded from the storage is securely verified before it 

is executed. Secure verification includes verifying the authenticity of 

the firmware, integrity of the firmware, security version number of the 
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firmware, and any confidentiality properties of the firmware. To prevent 

attackers from tampering with the firmware, it is required that Secure 

Boot be rooted in the hardware. Secure Boot ensures that attacks on the 

firmware at reset are now addressed.

Consider the high-level Secure Boot flow shown in Figure 5-12. The 

ROM is considered as a root of trust for the Secure Boot flow. As the ROM 

is considered equivalent to hardware, by design it is difficult to attack the 

ROM and requires the attacker to have physical access and use special 

equipment to conduct an attack on the ROM. All modern and future 

systems are adding capabilities to thwart physical attacks. You can learn 

more about these new techniques in the “Reference” section of this book. 

The ROM as the root of trust is responsible for starting the Secure Boot 

trust chain by securely verifying the first piece of mutable code read by the 

ROM from the storage for execution.

Figure 5-12. High-level Secure Boot flow

The system diagram for a typical implementation of secure boot is 

shown in Figure 5-13.
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Figure 5-13. System diagram for a typical Secure Boot 
implementation

The following are the different components that are part of the Secure 

Boot system architecture:

• High security module (HSM): The responsibility of this 

module is to store the private key used for signing the 

firmware binary and never exposing the private key to 

any user. Typically, this module is kept in a restricted 

area, and only authorized users are allowed to use 

this system to sign the firmware binary. This is one of 

the key assumptions for the security of a Secure Boot 

flow. If the signing key is compromised, then the only 

option is to use a different private key, and this requires 

potentially providing new computing systems into 

the field.

• ROM: As described earlier, the read-only memory is 

considered as the root of trust.
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• Fuses or one-time programmable region: This 

component is required to hold the hash of the public 

key part of the key pair generated by the HSM. Storing 

the hash of the public key in the hardware gives the 

binding between the secret private key used to sign 

the firmware binary and the system on which the 

verification is conducted.

• Storage for replay protection: The security version 

number is different from a typical version number. 

The security version number is updated only when a 

security issue is fixed, whereas the firmware version 

number can be updated if a new feature is added or a 

functional bug is fixed. This storage in the hardware is 

used to provide the minimum security version number 

that can execute on the system. This number is updated 

by the firmware during the firmware update process.

• Firmware in storage: To ensure that the firmware is 

verified correctly, a header or verification record or 

manifest is attached with the actual firmware binary. 

This header typically contains the security information 

used to verify the binary.

• Header: The header contains information such as 

the actual public key used to verify the signature; 

the result of signing the firmware binary (called the 

signature) using the private key at the HSM location; 

hash of the firmware binary to ensure that firmware 

is not tampered; the security version number of this 

firmware in the storage; and so on. All the information 

in the header is used by the verifier to ensure that 

the firmware binary is exactly what the manufacturer 

intended from a security perspective.
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As discussed in Figure 5-12 with the high-level Secure Boot flow, the 

ROM starts the Secure Boot chain by verifying the first piece of firmware 

read from the storage. The ROM reads the firmware binary and the header 

and then uses the contents of the header to verify the security properties of 

the firmware binary. Let’s go through a simple process:

 1. The hash of the public key in the header is 

compared with the hash in the hardware storage. 

This ensures the binding between the HSM and the 

hardware. Only if this step is successful, go to the 

next step.

 2. The signature in the header is verified using 

the public key in the header. Only if this step is 

successful, go to the next step.

 3. The hash of the firmware binary is compared with 

the hash in the header; if successful, go to the 

next step.

 4. The security version number in the header must be 

equal or greater than the security version number in 

the hardware; if successful, go to the next step.

 5. All the security properties are properly verified, so 

continue with the next stage of boot.

In the previous flow, if any of the steps fail, then depending on the 

design of the system, the boot of the system can fail, and the system can be 

designed to go into recovery.

As discussed earlier, the goal of secure boot is to ensure that any 

firmware binary executing on the controller/system is verified before it can 

be loaded for execution. The mechanics of the Secure Boot process can be 

applied to any controller with its own ROM or a root of trust in the system 

that controls the security for the controller.
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 Security Assurance

As we discussed earlier, the security of firmware is a task that is not 

something that is ever complete; it is an evolving problem as more features 

are added to the firmware and also as the following occur:

• Sophisticated attack vectors become more accessible to 

everyone.

• New techniques are created to attack firmware. Given 

this, it is important for any firmware vendor to have a 

solid security development life cycle (SDL) plan. This 

plan must include the following:

• Architectural analysis: Security starts with 

understanding the architecture and what problem 

is actually being solved. Hence, it is important to 

constantly reevaluate the architecture when significant 

functional changes are added to the firmware. This will 

help you understand if existing security assumptions 

continue to hold or new assumptions need to be 

created.

• Code reviews: The security architecture and design 

are only as good as the code that is developed to 

implement the architecture. Hence, an open source 

firmware development approach will help address this 

along with detailed code reviews to be conducted with 

the design and development teams to ensure that all 

security assumptions and dependencies are properly 

documented and implemented.

• Code scan using tools: While code reviews are great, 

some fundamental problems in the security of the 

design or implementation can be caught using tools 
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such as BlackDuck, etc. The goal of these tools is to 

analyze the code and binaries to determine common 

security vulnerabilities and provide alternatives.

• Security validation: This is an important step in the 

SDL process. Functional validation ensures that 

the firmware functions as expected and it is easy to 

create test cases to cover all the functional aspects 

of the design. The test cases help unearth bugs that 

can be fixed. But these functional tests do not test for 

the “security” of the firmware. The goal of security 

validation is to create tests to break the security 

architecture aspects of the design, break the security 

assumptions, try to expose assets, and so on.

For example, let’s assume a design in which a user is required to 

provide a login and password to access the firmware options. Functional 

testing would ensure that an user can provide the login and password 

correctly and ensure that a wrong login/password combination does not 

allow access. However, typical functional validation does not capture 

aspects such as the following: What happens if the user provides a login 

that is longer than allowed? What if the user provides special characters as 

a login or password? And so on. Some of these conditions can potentially 

cause misbehaviors in the system and expose security vulnerabilities.

Security assurance is an important aspect of the life cycle of firmware 

required to ensure that vendors are constantly monitoring and improving 

the security of the firmware.

 Firmware Update and Resiliency

Another important construct required to ensure the security of the 

firmware is the ability to keep the firmware updated to the latest version 

that has all the known security issues addressed. One of the key issues 
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firmware vendors face is how to deploy the updates; a full-fledged system 

is required with a server to push the update, and the firmware on the 

targeted device must accept the update and verify the update before 

writing the update into the storage where the firmware is at rest. However, 

these issues are being addressed comprehensively lately because of the 

concerns of attacks one can launch with compromised firmware.

Security for the firmware update process is required to ensure that 

unauthorized firmware is not written into the storage and potentially cause 

the system to brick. Verifying the update pushed by the server is similar 

to the process described earlier. Similar steps are used to ensure that the 

firmware modules received from the update server are valid and can safely 

be written into the storage area.

While the security for the update process ensures that firmware 

pushed by the update server is valid, there can still be nonsecurity issues 

with the pushed update. For example, functional bugs that have escaped 

validation can cause the system to brick or stop functioning. Hence, 

it is imperative for the security of the system that the firmware design 

considers resiliency. NIST 800-193 spells out the requirements for a design 

that considers firmware update and resiliency. Modern computing systems 

are designed to meet the NIST 800-193 requirements.

 Summary
The firmware on a system is critical for the operation of a system. Attackers 

are constantly looking for not only new methods but also new entry points 

into the system, and the firmware (being a critical foundation of a system) 

is one entry that must be protected with strong defenses. Yes, attackers will 

constantly be looking to identify vulnerabilities and exploit them, but the 

right foundation for security is that firmware vendors have to be nimble to 

address the exploits and ensure the systems are not compromised and also 

resilient.
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This chapter highlighted different security constructs such as 

assurance, secure boot, update, and resiliency that are used to create the 

foundation for firmware security. Ideally you will find a suitable space 

in your product development journey to be able to apply this knowledge 

when implementing your own system firmware to ensure the firmware 

is secured. You can learn more about the technical details of security 

advisories in the book’s “Reference” section.
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CHAPTER 6

Looking at the Future 
of System Firmware

“If everything you try works, you aren’t trying hard 
enough.”

—Gordon Moore

The evolution of system firmware over the last three decades has involved 

inheriting lots of complexity to support the underlying hardware and 

complement the limitations in legacy operating systems in a more flexible 

way for device manufacturers. This has resulted in unnecessary complexity 

in the entire system firmware boot process, requiring significant 

development cost and time to restructure the firmware design. This trend 

of designing complex system firmware has continued, without realizing the 

current end-user demands, offerings from modern hardware, and more 

competent operating systems that have overcome such legacy limitations. 

Boot firmware does not necessarily need to do a lot work, as it used to do 

in the past. Rather, future system firmware should have boundaries with 

end users and industry needs.

System firmware goals will evolve in the future, and if we could foresee 

those goals and align the designs of all available boot firmware (BIOS), 

then this would improve the ecosystem of future firmware. There are 
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several key areas inside the system firmware premises where the industry 

is looking to improve firmware design. The fundamental principles that 

future system firmware will focus on are as follows:

• Performance: In the modern computing era, billions 

of devices are connected to the Internet and doing 

trillions of data transfers per second. Turning a device 

off to perform a system update is too much to ask for. 

For example, if a Facebook or Google server has a 

scheduled reboot and the system restoration time is 

way higher then expected, it would significantly impact 

users and business. Hence, the minimum ask from 

future firmware would be an instant boot.

• Simplicity: For any solution to get accepted by the wider 

community, it has to be simple enough that it doesn’t 

expect too much from its users. Since the origin of 

the boot firmware, it has been maintained by a closed 

set of communities. Hence, it’s easy to implement 

system firmware with a high-level programming 

language and build a specification around it. But this 

results in resistance in the open community to accept 

such complex solutions and adapt to them. Also, the 

community wants to explore the best methodology 

to get rid of such complex solutions; hence, the idea 

is to use a basic programming language and software 

engineering methods, rather than being attached to 

something that needs specific skill sets.

• Security: Over the years system firmware has been the 

method to provide access from the operating system 

(OS) to the hardware layer due to its operational 

privilege level. ODM/OEMs are using legacy 

techniques like System Management Mode (SMM) 
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and Option ROM (OpRom) to perform platform device 

initialization, which remains unnoticed by the high- 

level monitoring layer like OS-driven security policies. 

This might expose security risks. The expectation from 

future hardware and SoC would be to define security 

into its core so that firmware can avoid having such 

legacy implementations, which not only increases 

the firmware footprint but also might increase the 

security risk.

• Open source: Any future firmware development and 

maintenance is expected to be in an open and inclusive 

environment, rather than limited to a few companies 

to make the decision on behalf of everyone. Having 

visibility into open source is kind of a blessing in many 

ways. It helps to resolve the trust issue that is normally 

there with any proprietary system firmware. Open 

source generally helps users adapt to a specification and 

provides a continuous feedback path for improvements. 

Reducing development cost is also another key benefit 

of open source for device manufacturers.

• Exploring hardware: In the past, firmware has 

been designed to ease the communication with 

the underlying hardware. Hence, when it comes 

to designing an efficient platform with reduced 

firmware space and an instant boot experience, device 

manufacturers usually pick the easiest solution by 

introducing a pre-initialized hardware controller. This 

results in a higher bill of material (BoM) cost and puts 

an extra burden on end users. But the real exploration 

would be on utilizing the existing CPU capabilities 

and offerings in hardware or refactoring the hardware 
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capabilities to design a better platform with combined 

hardware-firmware innovations, without increasing the 

platform BoM cost.

This chapter focuses on such key forward-looking firmware initiatives 

that have been built around the principles discussed earlier.

• Designing LITE firmware: The real need of firmware 

is to perform essential hardware initialization to boot 

the platform to the operating system. But the firmware 

boundary has grown so much in the last decade that 

sometimes it’s referred to as “beyond BIOS.” This 

chapter will cover how to design a LITE boot firmware 

to shrink the firmware boundary.

• Designing a feature kernel: The book System Firmware: 

An Essential Guide to Open Source and Embedded 

Solutions provides details about the payload and its 

usage model. The only purpose that a typical payload 

serves is to pick the correct boot services like console 

input, console output, and block device or network 

device to boot to the OS (and additionally perform 

some crypto-related operations to verify the kernel 

partitions prior to loading). In addition, there could be 

some ODM/OEM-specific customization to allow users 

to configure the BIOS. The feature kernel concept is to 

utilize the kernel as part of the payload to reduce the 

firmware boundary and use early OS-like environments 

to further boot to the OS.

• Design multithread boot firmware: In the past, boot 

firmware has been designed to work over a single- 

threaded environment. Modern and future processor 

designs are more capable of supporting more logical 
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processors. But because of the legacy design of 

system firmware, it never works in a multithreaded 

environment to provide better opportunities for future 

boot firmware and reduce platform boot time.

• Innovative hardware design: Today system firmware 

looks more complicated because of the underlying SoC 

and/or hardware design. Ideally, the system firmware 

should just be responsible for performing basic CPU 

and chipset initialization, and the rest hands over 

the control to the operating system. But because of 

several factors such as not having enough memory to 

access hardware resources early in the boot process 

and the need to set up temporary memory to continue 

the hardware access, such cyclic dependencies in 

hardware design limits the innovation in firmware and 

tries to make system firmware act as legacy firmware. 

This chapter will discuss the possible innovation 

in hardware or SoC architecture to make the future 

firmware get rid of this legacy.

 Designing LITE Firmware
Basic Input/Output System (BIOS) was originally meant to perform basic 

hardware (CPU and chipset) initialization during the boot process and 

when booting to the operating system. Over time, to support complex 

SoC and platform designs, the BIOS has also become reasonably complex 

and mammoth in nature. Today, the de facto successor to BIOS is Unified 

Extensible Firmware Interface (UEFI), which is also known as “beyond 

BIOS.” Having said that, there are some ecosystem concerns due to its 

closed source nature.
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Because of the increasing concerns of security, complexity, and closed 

firmware, the industry is heading toward platform development under 

the open source umbrella, by an initiative driven by the Open Compute 

Project (OCP, https://www.opencompute.org/). This effort has led market 

leaders to also adopt open source firmware development approaches.

This provides an opportunity for the OEM/ODM to pick a suitable 

BIOS for their platform from a wide range. As discussed earlier in this 

book, there are currently three main successors to the BIOS: coreboot, 

Slimboot, and UEFI.

Typically closed source BIOSs for client and server platforms have the 

following shortcomings:

• The firmware has become an operating system.

• The system firmware is archaic, complex, and often 

quite buggy.

• Closed source firmware is hard to maintain and can’t 

forward/backport features and fixes.

• Vendor-specific tools are used in the case of closed 

source firmware.

• Closed source firmware has a large number of features 

and complexity required to support shrinkwrap 

operating systems and the vagaries of ‘compatibility’ 

therein.

• Closed source firmware has more challenges in 

robustness, ability to debug, and flexibility in both 

build and deployment.

OEM/ODMs are looking forward to overcoming these barriers by 

adopting open source firmware approaches. Open source firmware provides 

the opportunity to achieve feature parity, support for many generations of 

equipment, and curating both unified and adaptable toolkits.
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coreboot is the most popular and is an extended firmware platform, built 

on the principles of open source software; it provides key advantages from 

having various CPU architecture support available by default to all OxMs.

As a firmware developer, what matters most is how to initialize various 

hardware intellectural property (IP) blocks in order to boot a SoC and 

hand it over to the operating system (OS). This process involves writing 

various components/IP initialization code for different SoC. But today 

any system firmware, be it open source or closed source, has unnecessary 

or redundant and complex blocks to perform hardware initialization. 

The majority of those complex and redundant hardware initialization 

blocks were introduced when operating systems were not as advanced as 

today and there was not much hardware knowledge to perform platform 

initialization. Here are some examples:

• PCI enumeration and resource allocation: All boot 

firmware does PCI enumeration and resource 

allocation before booting to the operating system. In 

reality, PCI enumeration was required in the BIOS 

space only when the operating system was not capable 

of doing it. It was late 1999 when Linux had limitations 

to performing PCI device initialization, and the BIOS 

was responsible for the PCI configuration.

• Multiprocessor initialization: Boot firmware does CPU 

core initialization, brings APs out of reset, and runs 

some basic tasks such as range register programming 

with DRAM-based resources. But because of the BIOS 

topology of running in a single-threaded environment, 

it never uses those APs to run tasks in parallel. In the 

past, operating systems were unable to perform SMP 

initialization. Hence, it was kind of a requirement to 

perform those initializations in the boot firmware 

space. But today Linux-like kernels are capable of doing 

SMP setup at an early stage of OS booting.
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• Provide runtime services: System firmware has 

provided runtime hooks to operating systems using 

SMI handlers. Recently, many security researchers 

have strongly discarded this practice of using runtime 

services via SMI.

• Storage block initialization: At the end of boot firmware 

initialization, it’s expected that firmware should 

initialize the block devices like UFS/emmc, NVMe/

SATA or USB to boot to the kernel. This means that 

system firmware should have the required storage 

drivers in it to perform those initializations. Having 

those advanced drivers inside the firmware space 

makes it more complex and increases the maintenance 

costs as well. For example, to boot from NVMe, one has 

to add NVMe driver support in the firmware space. But 

in general that support has already been added into 

Linux-like kernels by default.

With the previous examples, it’s clear that there are many redundant 

blocks that exist inside system firmware today. Different individuals 

writing the same initialization code for different firmware blocks will 

increase the enabling time, as well as the validation time and the review 

time. All SoC vendors have to support all possible BIOS solutions; hence, 

we’re not gaining anything by doing repeated work in system firmware. 

Rather, it is increasing the liability of validating it across platforms.
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 Design Principle
Let’s focus on implementing solutions with respect to the open source 

firmware space, i.e., coreboot. (Similar designs can be made for UEFI and 

Slimboot as well in the future.) coreboot is an extended firmware platform 

that delivers a lightning-fast and secure boot experience on modern 

computers and embedded systems. Figure 6-1 provides a simplistic view 

of the coreboot flow and other population boot firmware so you can 

understand the size impact of each BIOS phase and where this philosophy 

of LITE firmware can fit in.

Figure 6-1 and 6-2 provide the typical boot flow of the boot firmware 

for any SoC platform and the estimated size for each stage. Without having 

a detailed understanding of its boot flow and where the majority of boot 

time and boot firmware footprint lies, it would be difficult to design the 

LITE firmware solutions.

Note the boot flow between coreboot and the Slim bootloader are 
similar, where the bootblock can be referred as Stage 1a, romstage 
as Stage 1B, and ramstage as Stage 2; hence, the estimated size for 
those stages are almost identical.
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Figure 6-1. Typical coreboot flow with size of each boot stage
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Figure 6-2. Typical UEFI flow with size of each boot stage
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The takeaway from these figures is that ramstage as an individual stage 

is consuming around 80 percent of the total coreboot volume, and DXE is 

similar in the case of UEFI.

Today both firmware and the OS have an equal share of complexity in 

their domains. As we are interested in open source firmware development, 

let’s discuss coreboot and the possibilities for designing LITE firmware.

• Ramstage has grown over time from a simple PCI 

configurator to a complex firmware programming block 

that does something beyond its basic needs and thus 

creates redundancy.

• Operating systems have also grown in capacity over the 

years. Hence, the things that were not possible decades 

ago in the OS and relied on the system firmware are 

now very much possible to perform using the kernel 

layer itself.

• The OS for sure can handle more than what 

ramstage does.

• Hence, we are now at an “intersection point” of the 

ramstage and operating systems.

• So, the real question is, do we really need a ramstage-

like programming block?

The answer is simple: no, we can adopt a “LITE” model.

The system firmware needs to explore the possibility of being LITE 

where the proposal is to have a minimum functional firmware block with 

an original boot firmware methodology to boot to the operating OS. The 

basic agenda of a LITE system firmware would be removing the redundant 

firmware initialization and making as much use of the operating system as 

possible.
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Over the years ramstage in coreboot and DXE in UEFI have grown 

beyond their boundaries, and system firmware space has been a bit of a 

dumping ground to put more OS-like services and applications.

Many features provided by ramstage are not required to be explicitly 

added into ramstage and don’t have a real product need. For example:

• SMM: The limited usage model should depend on CPU 

vendors and product design requirements.

• Support S3/Sleep: Modern computing systems have 

support for connected standby, lucid sleep, or runtime 

suspend where such underlying legacy Sleep/S3 

support can be moved from being mandatory to 

optional based on the platform design.

• Runtime services: This depends on the targeted 

operating system; hence, there is no point in publishing 

more runtime services than the OS is actually able to 

consume.

Using the LITE model, the system firmware can perform the limited 

initialization of chipsets components that are getting used “only” in 

firmware space to reduce the firmware boundary.

Mandatory PCI device enumeration and resource allocation: 

Figure 6-3 illustrates the current PCI device enumeration and resource 

allocation flow, where ramstage for example in the case of coreboot is 

responsible for picking all PCI devices from the available PCI tree and 

performing the predevice initialization and early chipset initialization, 

specifically to compute and assign the bus resources, enable devices 

on the bus, and finally initialize the devices on the bus. This iterative 

process of the PCI tree parsing and resource assignment and finally device 

initialization can take a significant amount of time in the boot process. 

This scenario is also the same with UEFI and Slimboot, being responsible 

for doing the entire PCI tree enumeration irrespective of being used in the 

firmware space or not.
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Figure 6-3. Typical coreboot PCI enumeration process in ramstage
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In the LITE firmware design principle, the system firmware only needs 

to initialize and enable PCI devices that are getting used in the firmware 

space and perform the minimum operations prior to transferring the 

control to the payload or OS.

To adhere to the LITE firmware development strategy on coreboot, a 

new tag of “mandatory” was added into the PCI tree generation process 

to skip all the unnecessary device initialization in the firmware space and 

save a significant amount of system firmware boot time.

During static parsing of the PCI tree structure in coreboot in the LITE 

firmware model, all PCI device initialization will be skipped unless the 

“mandatory” keyword is tagged with that PCI device.

The following is the pseudocode from a coreboot reference where a 

minimum PCI enumeration can be achieved by adding the additional 

“mandatory” keyword checks to save on boot time. CONFIG_LITE_FIRMWARE 

is the token being used in the coreboot open source firmware to identify 

the platform using the LITE system firmware development model.

/*

 *  Probe all devices/functions on this bus with some 

optimization for

 * non-existence and single function devices.

 */

for (devfn = min_devfn; devfn <= max_devfn; devfn++) {

        if (CONFIG(LITE_FIRMWARE)) {

             dev = pcidev_path_behind(bus, devfn);

             if (!dev || !dev->mandatory)

                    continue;

        }

        /* First thing, set up the device structure. */

        dev = pci_scan_get_dev(bus, devfn);

         ....

         ....

}
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The following example from the X86-based QEMU emulation shows 

the reduction in PCI enumeration effort significantly in coreboot by 

performing only the mandatory PCI device initialization (host bridge and 

LPC in the following example), which is the minimum system firmware 

requirement to boot to the payload and further to the OS. The mandatory 

PCI device list might differ between platform designs, hence making it 

flexible for platform owners to add the minimum device initialization list 

as required.

 

Figure 6-4 explains the proposed LITE firmware-based PCI 

enumeration to avoid complexity and further reduce the firmware 

footprint and improve system boot time.

In the following example, the system firmware will perform the 

initialization and resource allocation for two devices alone (the devices are 

tagged with the “mandatory” keyword), compared to all possible devices 

in the existing model.
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Figure 6-4. Adopted LITE firmware model in coreboot for PCI 
enumeration

Minimum CPU initialization: In a multiprocessor environment, 

the system firmware brings up only a single bootstrap processor after 

the power-on reset. Later in the boot process, the system firmware 

also needs to bring up all the applicable logical processors to perform 

simultaneous operations in parallel. Because of the limited knowledge in 

previous generation operating systems for bringing up all of the logical 

processors, it needs to rely on the system firmware. Typically, ramstage 

(in coreboot), like an advanced stage, is responsible for performing this 

multiprocessor (MP) initialization operation. It’s also a fact to consider 
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that each operation to bring up the other logical processor into action 

has its own latency as per CPU vendor design guide. Hence, the possible 

solutions to ensure minimum CPU initialization are as follows:

 – Based on the real needs, design the system firmware to 

perform operations in a multithreaded environment.

 – Early initialization of the processors during boot.

 – Deferring initialization of all of the processors in 

the kernel.

Reduced ACPI table creation: ACPI stands for Advanced 

Configuration and Power Interface. The purpose of ACPI is to describe 

the underlying hardware and its interface to the operating system to let 

you understand that the hardware is present and how to configure it. It 

controls hardware actions such as the power button behavior, system sleep 

states, etc.

In the existing model, the creation of ACPI tables have been tied to the 

PCI enumeration using the dynamic ASL generation method; hence, the 

BIOS may perform any of the two possible operations as follows:

Option 1: Attach the required ACPI dynamic generation process to the 

PCI tree device marked as mandatory as follows, where ChromeOS needs 

an ACPI device for the embedded controller and hence attaches the device 

to the LPC interface:

device domain 0 mandatory

     device pci 1f.0 mandatory

          chip ec/google/chromeec

               device pnp 0c09.0 mandatory  end

          end

     end # LPC Interface

end
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Option 2: Let the system firmware completely get rid of the ACPI 

creation process and try to utilize the kernel driver rather than relying on 

the underlying runtime firmware services. There is a kernel command-line 

parameter named acpi.

acpi: Many hardware platforms ship with buggy or out-of-specification 

ACPI firmware, which may cause unspecified problems. If the platform 

is randomly powering off or failing to boot due to potential ACPI- 

related issues, disabling ACPI is recommended in such scenarios. To 

potentially get rid of the additional complexity of pulling the required 

ACPI infrastructure into the prior boot stage, one could also explore this 

acpi=off kernel command to skip ACPI creation in the system firmware. 

The downside of this approach is that the system loses its capabilities to 

communicate with the system firmware, and the user space application or 

driver needs to create direct access to the underlying hardware to retrieve 

some key information like battery status, power-off, shutdown, etc.

Figure 6-5 illustrates the modified coreboot boot flow using the LITE 

firmware development model.
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Figure 6-5. coreboot boot flow with adapted LITE firmware model

Chapter 6  Looking at the Future oF SyStem Firmware



325

Figure 6-5 shows how this LITE model benefits the open source system 

firmware development approach. This approach to LITE system firmware 

development on coreboot could be applied to UEFI firmware development 

as well. In the case of UEFI, it would reduce the DXE stage by keeping only 

the required DXE modules to boot to the BDS stage.

 Conclusion
• A reduction of ramstage (in coreboot) eventually 

reduces the code by 50 percent.

• Improved boot performance is able to reduce the boot 

time by an additional ~500ms.

• This effort might help the OEM/ODM to reduce the SPI 

Flash size and eventually optimize the platform bill of 

material cost.

• Given that operating systems are more sophisticated 

and feature-rich, this approach of moving more of 

the traditional firmware flows into the OS kernel will 

provide a more balanced approach long term.

• From a platform engineering team perspective, there 

will be very minimal firmware support required if this 

proposal is implemented successfully. There is a good 

amount of resource savings.

• People do not have to learn a specific boot state 

machine/PCI enumeration process/payload or 

complex protocol/services-oriented firmware 

development tricks. Instead, they can focus on the early 

kernel boot process.
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 Designing a Feature Kernel
The payload is an additional firmware entity used in system firmware to 

boot to the operating system. Boot firmware can be used with various 

payloads to provide a complete system firmware solution where ideally 

a payload’s job is to find the required boot services like console input, 

console output, and block device or network device to boot to the OS. In 

addition, there could be some ODM/OEM-specific customization like a 

pre-boot environment to launch an application to certify the bootloader or 

diagnose the underlying hardware.

But the problem is that all payloads are different in nature from each 

other, and they have their own expectations from the boot firmware. 

Hence, there is no unification possible to boot to the operating system, 

although the targeted OS might be the same in all these cases.

Having a different payload for the same boot firmware creates various 

problems while developing system firmware:

• The underlying boot firmware needs to provide various 

interfaces as expected by different payloads, resulting 

in interfaces that are unused without any consumer of 

any service on the payloader side, resulting in higher 

development and validation time.

• The storage device is required to boot the OS from 

firmware therefore, the payload is likely to have such 

hardware support. For example: next generation 

block device support like UFS and NVME been added 

recently. Often this support is backported from the 

equivalent upstream kernel driver into the more 

limited firmware environment.
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• There is a need to custom hardware initialization flows 

in the payload prior to the OS due to the lack of full OS 

system services and features. For example, the payload 

requires a boot beep for error reporting in case of 

faulty hardware. To implement the requirement either 

a dedicated hardware circuit or an audio driver in 

payload is required to generate an audio tone.

• The maintenance of the payload infrastructure is also 

difficult due to limited open source community support.

• The typical payload size is from 1.5MB (compressed) to 

about 6MB, which is eventually sitting in SPINOR and 

will result in additional BoM cost.

Figure 6-6 provides the overview of modern system firmware with 

different payloads, booting to the OS.

Figure 6-6. coreboot boot flow in a current scenario
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Look at the “Boot Partitions” block 1, highlighted in Figure 6-6: it is the 

initial kernel block, typically sized about 4MB. During the platform boot, 

the payload tries to locate the initial kernel block from the boot media 

(NVME, eMMC, SATA, UFS, etc.) and then verifies it prior to loading it into 

the main memory. The initial kernel block is then run over memory to 

perform the root file system mount, followed by the boot kernel picking up 

the runtime kernel block to complete the boot sequence.

 Design Principle
The idea of a “feature kernel” is to avoid having a dedicated payload 

attached to the BIOS to boot to the OS and possibly simplify the system 

firmware boot flow by using the LITE firmware model plus the feature 

kernel to further reduce the firmware boundary and improve the system 

booting time.

Figure 6-7 illustrates the proposed “feature kernel” boot flow with an 

open source firmware model, where the initial kernel block (about 4MB) 

would be part of SPI Flash, and the bootloader would load the boot kernel 

from SPINOR and run over the memory to perform the root filesystem 

mount, followed by the boot kernel to pick the runtime kernel from 

the bootable media. In that process, the payload dependencies can be 

removed as well.
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Figure 6-7. coreboot boot flow with adapted LITE firmware and 
feature kernel

 Conclusion
The key benefits of this idea are as follows:

• In the past, the system firmware booting from SPINOR 

was considered as the Trusted Computing Boundary 

(TCB) and the OS partitions stored into block devices 

were always outside of this computing boundary. But 

this approach would bring the kernel within TCB, 

which means

• The firmware update implementation using the 

power of the boot kernel could be more efficient 

than ever in this model.
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• It is more scalable for future usages (i.e., support for 

advance boot devices/specs is native).

• There is no need to create a special hardware 

interface or driver support in the payload/

bootloader to bypass the audio codec to implement 

special solutions like boot beep, etc.

• There is a reduction in system firmware complexity 

to create dedicated interfaces for various payloads.

• We can avoid the additional porting effort of any 

new controller and interface in the payload from 

the kernel as and when required.

• There is a possible reduction of SPINOR size and 

dedicated development effort to create support for 

a newer SoC in the payload.

 Design Multithreaded System Firmware
In the modern-day world, where usage of IoT devices (like automotive 

and navigation devices and home appliance devices) and client devices 

are rapidly increasing, performance is key. Users are expecting to see 

the device operational as soon as they press the power button or hold 

the device.

The increase in the complexity of compute, software updates, and the 

I/O subsystem has created new challenges to meet customer expectations, 

such as a better user experience with a faster boot to the OS, providing an 

instant-on experience.

As part of the enhanced user experience (UX), many applications using 

advanced computer systems now demand an instant system bootup time. 

A faster system response time is a key performance indicator (KPI) used 

by OEMs/ODMs for their product requirements for almost all computing 
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sectors today, such as personal devices like modern smartphone/tablet/

laptop, healthcare equipment (ultrasound, defibrillators, and patient 

monitor devices), industrial devices (robots change arms) and MAG 

systems (firing a missile, fail-safe redundancy on airplanes, or similar 

single function devices), and office/home automation devices.

Figure 6-8 shows the typical client platform (x86 architecture based) 

boot path where the entire boot process is in sequential order. The average 

system boot time is expected to be less than 500ms from the G3 system 

state (no power applied) until the operating system (OS) hand-off, which 

includes the pre-power (All rails and clock stabilization), prereset (power 

sequencing), and post CPU reset (boot firmware and payload) boot path 

components. But in reality the system boot time is way beyond 500ms 

today (average ~2sec).

Figure 6-8. Typical x86 based client platform reset flow with all BIOS
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It is important to note that the most time-consuming phase of the 

total boot path is the execution of the system firmware as mentioned in 

Figure 6-8, hence making it a critical phase to optimize to provide a fast 

boot experience.

Another point to consider is that an increased number of I/O 

subsystems attached to the motherboard, and every subsystem having 

its own device firmware, poses increasing challenges for product 

manufacturers to ensure periodic firmware updates with an instant system 

power-on experience.

Figure 6-9 shows a typical OEM platform design that more than 15 

independent IP/device FW updates take place when the OS initiates the 

FW update. As the FW update takes place during the boot path where 

the entire boot process is in a sequential order, it’s impossible to meet 

the expectation that the system firmware would be able to complete all 

device (SoC and Platform) firmware updates (measuring FW components, 

verifying FW components, loading FW into device, reading firmware 

version back to ensure successful FW update) within the regular time 

window, which is expected to be less than 500ms to 1sec from the G3 

system state (no power applied) to the operating system (OS), hands off.
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Figure 6-9. Typical OEM client platform design with possible 
firmware update requirement

As the entire BIOS boot takes place in a single-threaded environment, 

running only over the Boot Strap Processor (BSP) (even after multicores 

are available typically at ~650ms since CPU reset), it results in an indolent 

wait time on the BIOS side. Eventually this results in discrete and serial 

platform initialization where each independent IP/device initialization/

update is waiting for its execution time or turn. This entire process makes 

the platform slower while operating firmware updates and creates a 

bad user experience. Subsequently, this makes users afraid of accepting 

firmware updates, meaning the users will push out firmware updates 

without knowing the criticality of the update that might potentially fix 

some platform security issues.

Another use case is Windows 10X where the OS is moving to an AB 

servicing model and the operating system will update itself while running 

(i.e., while running OS version A, it will provision a new version B),  
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versus today’s scenario with the blue screen and percent countdown. 

Microsoft is now constraining the preboot time for doing BIOS/capsule 

updates, so having a speedier reboot is necessary to meet these emergent 

UX requirements.

All device manufacturers are looking toward an instant platform boot, 

without bothering whether the platform has mundane or bulky devices 

attached to it, whether the boot process is going through a firmware 

update initiated by the OS, etc. But the legacy boot process always runs in 

a single core, irrespective of modern-day CPUs being multicore processors 

in nature, where two or more cores are capable of running in parallel to 

execute tasks. This in turn forces the firmware code to run sequentially, 

leading to a slower boot time and ineffective usage of processor power and 

system resources to initiate SoC components, and/or platform devices 

update/initialization process, and thereby resulting in a higher platform 

boot time and ultimately a bad user experience.

 Design Principles
The proposal is to enhance the boot process by adding concurrency to 

it by isolating boot functions and platform configurations, which will be 

executed with the boot firmware as the context master. Additionally, the 

method proposes configuring the platform components with additional 

cores for running concurrent processes. Finally, this method will also be 

applied in the process of firmware updates during the boot phase.

This section will explain the necessary changes in system firmware 

flow to create a multithreaded system firmware boot solution that 

overcomes the limitations mentioned in the previous sections.
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Multithreading is the ability of a CPU to execute multiple processes 

concurrently. In the multicore platform, it is the responsibility of the BSP to 

perform multiprocessor initialization to bring application processors (APs) 

out from reset. In a multiprocessor (MP) environment, each processor can 

perform independent execution of assigned tasks.

The design principle is to provide an option to ensure a multithreaded 

environment where the BIOS can perform its tasks concurrently. To design 

a multicore environment, there might be some potential hardware or CPU/

SoC architecture changes also required; the details can be found in the 

section “Innovation in Hardware Design.”

The assumption is that the platform has made some hardware changes 

to support this system firmware design change proposal.

• This method decouples unidirectional communication 

flow in the boot firmware to allow independent BIOS 

tasks to perform over parallel threads.

• This method provides options for boot firmware to 

execute its tasks in a parallel thread-safe mechanism 

(without worrying about core synchronization between 

multiple firmware back-and-forth calls).

• This method provides flexibility to perform 

multiprocessor initialization early in the boot flow to 

maximize CPU resource utilization by the BIOS.

• The hardware design change proposal provides 

significantly larger temporary memory at the 

prememory phase in terms of the SRAM or LLC cache 

to execute independent tasks over dedicated cores 

in parallel in absence of physical memory or prior to 

DRAM initialization.
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• This method implements a high-level synchronization 

construct as a “monitor” type inside system firmware 

to ensure tasks are getting performed in multiple cores 

and remain in sync to avoid any duplicate access. The 

“monitor” construct ensures that only one processor at 

a time can be given access to a task.

• Using the MONITOR/MWAIT instruction inside system 

firmware reduces latency between the core operations 

and wake time from idle.

• Use a semaphore to access potential shared resources 

inside the bootloader in normal mode.

Figure 6-10 illustrates the modified firmware boot flow of a system to 

leverage the new design proposal.

In the existing design, no tasks are getting executed over cores other 

than the BSP, although Aps are available and active later in the boot flow. 

In this proposed model, the BIOS is designed to work in a multithreaded 

environment, where all possible cores are available and active right at the 

reset break or within a very short time after reset.
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Figure 6-10. Existing versus proposed system firmware flow with 
multicore environment

To run multiple operations concurrently using the available hardware 

and CPU capacity, first the system firmware needs to split all the possible 

tasks required to boot to the OS into multiple subtasks and assign them 

over multiple cores to run in parallel. Hence, it needs a semaphore for 

providing a convenient and effective mechanism for core synchronization.
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Here are the design principles to build this multithreaded system 

firmware logic:

• Implement monitor/mwait logic inside the system 

firmware to avoid idle time while resting the core, upon 

completion of a task and prior to assigning a new task.

• A single task is attempted by a single core at a time, and 

a task is assigned to the core if both the task and the 

core are available and free, respectively.

• To implement this solution, some data variables are 

needed, as shown here:

 a. Shared region: In the multicore environment, 

to avoid synchronization issues, a shared data 

region is needed where the interprocessor 

communication (IPC) variables will be stored. 

Task state variables will also be located in 

such shared data regions for allowing core 

synchronization.

 b. Task state variable: A “task” and “state” data 

structure is created with “n” number of planned 

tasks in it.

 i. Each task has its state tag to notify it if a task 

is waiting for the actual core to get assigned, 

if the task is in progress, or if the task is 

completed.

 c. Initialization code: Prior to entering into the 

critical region where each core will perform the 

independent hardware controller initialization 

task, the initialization code assigns all those 

tasks to its default state.
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 d. Scheduler: Create a scheduler inside the system 

firmware to assign the waiting tasks to the 

available cores, where “mwait” initially treated 

as “nop” and “monitor” would assign the next 

task instruction and immediately change the 

task state to “in progress.” Once a core is done 

with its assigned task, it will mark the task state 

as “done” and wait an “mwait” for the next 

available task assignment.

 i. Respective cores would execute those 

assigned tasks and update the shared data 

variable. This step continues until all tasks 

are migrated to “done” states.

 e. Task assignment: The idea here is to perform 

only the independent boot tasks to perform 

over a multithreaded environment, whereas the 

BSP would still continue to perform the typical 

hardware controller interdependent tasks.
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Figure 6-11. Schematic view of a monitor

• Prior to booting to the payload or operating system, 

all the available cores would need to reach a 

synchronization point, where the BSP would monitor 

the shared data region to check the state of the assigned 

tasks and the current condition of the cores. Ideally, 

all the tasks should get tagged with “done,” and all the 

available cores should park into the “mwait” state and 

remain in active state.
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The book System Firmware: An Essential Guide to Open Source and 

Embedded Solutions demonstrates a case study done on an x86 platform 

using this multithreaded system firmware design principle to perform 

the dynamic optimization of the system boot time without any additional 

hardware modification.

 Conclusion
The following are the key benefits of this idea:

• This innovation helps to nullify legacy system firmware 

assumptions of a serialized boot or even static 

multithread boot to optimize the boot time. Rather, 

this method proposes an opportunistic platform boot 

by predicting when to initiate a multithreaded boot to 

optimize the boot time.

• This proposed solution might be useful for running the 

entire system firmware update shown in Figures 6-9 

and 6-10 using all the available core’s capacity. This 

will significantly improve the firmware update latency 

problems and ensure that the system never goes out of 

service.

• A proof-of-concept trial of informed multicore 

boot has been produced. It demonstrates the boot  

performance savings compared to the normal firmware 

boot method. (refer to the book System Firmware: 

An Essential Guide to Open Source and Embedded 

Solutions for more details)
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 Innovation in Hardware Design
Today system firmware is more complicated because of the underlying 

SoC and/or hardware design. Ideally the system firmware should just be 

responsible for performing the basic CPU and chipset initialization and 

then handing over control to the operating system. But because of several 

factors, like not having enough memory to access hardware resources early 

in the boot process and the need to set up temporary memory to continue 

the hardware access, such cyclic dependency in hardware design limits 

the innovation in firmware and tries to make the system firmware act like 

legacy firmware.

This section discusses such possible hardware limitations in the 

existing CPU and platform design and identifies the possible solution to 

design a simplified version of the system firmware to either reduce the 

boot boundary or optimize the platform BoM cost with a more complex 

hardware design.

Refer to Figure 6-12 to understand that the existing system firmware 

boot flow on any architecture has a significant dependency on the physical 

memory available during the early boot phase.

Take for example the x86 platform, where the legacy CPU design or the 

modern SoC design doesn’t have a dedicated pre-initialization memory 

controller such as static RAM (SRAM), which is available in other CPU 

architectures like ARM. But as per the system firmware design, it needs 

memory after reset to perform chipset initialization using advanced 

firmware programming logic, which needs a basic programming 

infrastructure like a stack, heap, and functions to make the firmware 

development more modular. Rather, on the x86 platform, to mitigate 

the problem of not having ample memory at reset, the SoC architecture 

proposes using a shared cache between the various underlying hardware 

blocks inside CPU/SoC, as per Figure 6-12.
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Figure 6-12. Cache architecture on x86 architecture

Because LLC is bigger in size than other available caches, it should be 

used in the absence of real physical memory or SRAM on x86 platforms. 

The process of cache being used as temporary memory is known as cache 

as RAM (CAR). This has its own complexity with several model-specific 

registers (MSR) that need to be programmed. Also, this programming 

recommendation might evolve generation after generation due to 

improved the cache architecture. Because CAR or temporary memory 

is quite limited, the entire chipset initialization can’t really rely on this 

memory; rather, this limited memory is being served as the minimum 

memory required to set up the stack and initial programming requirement, 

until the time physical memory is initialized. Typically in the system 

firmware boot process on the x86 platform, early stages like bootblock and 

romstage in coreboot, SEC and PEI phases in UEFI, Stage 1A and Stage 1B 

in Slim Bootloader, are just for the preparatory work being done to mitigate 

the design limitation. Eventually this limitation also results in delaying the 

initialization of the security controller that is sitting deep into the SoC/

CPU hardware layer and unable to communicate with the host CPU in the 

absence of a good amount of physical memory.
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 Design Principles
The proposal is to create a platform design by combining the hardware 

and firmware-centric innovations. A simple system firmware design has a 

bottleneck on the platform hardware design. This section will highlight a 

futuristic system firmware design where the firmware-level complexities 

are being nullified by the hardware design to make a system firmware that 

is more generic, simpler, and robust.

 Hardware Design Principles

Ideally, having a simplified SoC design will also reflect the simple system 

firmware design, without added complexity and so much preparatory 

work needed to perform basic chipset initialization even using the LITE 

firmware design principle.

This section will provide several hardware modification proposals for a 

simplified boot process.

Scenario 1:
Figure 6-13 provides a SoC design with an on-chip SRAM controller 

and reasonable numbers of SRAM attached for initializing CPU and I/O 

components and allocating resources without really depending on the 

DRAM initialization sequence.
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Figure 6-13. Proposed SoC design with on-chip SRAM

These kinds of SoC designs are costly compared to a DRAM-based 

hardware design, and at the same time the available SRAM memory is 

supposed to be limited. On a typical x86-based client and IoT platform, to 

complete the entire static device initialization (without off-board graphics 

or a network card), the system firmware requires about 32MB of memory, 

which is possible to accommodate using such hardware design. SRAM has 

a lower access time, so it’s faster compared to DRAM; hence, it’s efficient to 

meet the low-level access latency requirement on the boot firmware.
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Scenario 2
Figure 6-14 provides an alternative proposal, where there is no need 

to increase the BoM cost by introducing SRAM like costly and dedicated 

hardware components into the SoC design, instead utilizing the existing 

SoC design and providing an additional interface to access the DRAM 

controller by an auxiliary processor sitting in the SoC.

Figure 6-14. Proposed SoC design with auxiliary processor initialize 
DRAM at prereset
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The auxiliary processor at the prereset stage would utilize its boot ROM 

to perform self-initialization and fetch the auxiliary patch firmware from 

the IFWI layout (present inside the SPINOR or block device) to initialize 

the DRAM controller and train the memory prior to the x86 cores hitting 

reset. After the CPU reset, the system firmware running on the host CPU 

won’t necessarily perform that temporary memory setup; rather, it’s able to 

perform flat access to physical memory.

 Firmware Design Principle

The proposed hardware design changes described earlier in scenarios 1 

and 2 would help to simplify the job of system firmware and also help to 

nullify the legacy requirement where the system firmware has to perform a 

few additional steps just to mitigate the problems described.

The following sections will provide the modified system firmware 

design to accommodate either of the hardware change proposals.

Figure 6-15 provides a high-level boot flow of the system firmware 

where either SRAM is available or an auxiliary processor like PSP in the 

AMD SoC reset architecture can be used to perform memory controller 

initialization.

 1. Upon powering on the system, the auxiliary 

processor present inside the SoC will start execution 

immediately from its ROM. This is followed by 

fetching the updatable patch from the IFWI layout. 

The reason for having such an updatable patch 

into IFWI is so that it’s easy to provide bug fixes 

if required and send new patches over firmware 

updates during system use in the field.

 2. The auxiliary processor patch firmware has the 

required foundation code to initialize the DRAM 

memory controller and train the memory device.
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 3. After DRAM controller initialization, memory is 

available at pre-CPU reset. The auxiliary processor 

will pass the available memory base and limit to 

the bootloader. Upon CPU release, the bootloader 

will use that memory range to create the system 

memory layout.

 4. At CPU reset, it breaks those legacy assumptions 

about x86 boot flow where the setting of temporary 

memory is no longer required. Hence, several boot 

phases can be removed with these assumptions:

 a. On the coreboot side: There is no need to have a 

dedicated bootblock, romstage, and postcar because 

all these stages are just meant to do the preparatory 

work prior to or during DRAM initialization.
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Figure 6-15. Reduced system firmware boot flow with pre-initialized 
DRAM at reset

 b. On the UEFI side: The SEC and PEI phases can be 

eliminated as memory can be default initialized. 

All the necessary pre-work can be done in the DXE 

phase directly.
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With memory available at reset, the reset vector can 

now be patched at DRAM mapped memory, rather 

than SPI mapped memory. The auxiliary processor 

loads the OBB image from SPINOR into DRAM prior 

to hitting CPU reset. The system firmware will start 

executing the code from the ramstage in coreboot 

(as per Figure 6-15) or DXE (as per Figure 6-16).

Figure 6-16. Reduced UEFI boot flow with pre-initialized DRAM 
at reset
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 5. This process will help to reduce the firmware 

boundary, and the system firmware is now 

responsible for doing only the recommended 

chipset and CPU initialization. The BIOS will create 

its own system memory map as shown Figure 6-17 

and break the barrier between different boot stages 

with the only goal to perform the minimum and 

mandatory operations to boot to payload.

Figure 6-17. UEFI DXE being the first stage after CPU reset

 Conclusion
The key benefits in this idea are as follows:

• Provide flexibility in system firmware design and don’t 

really focus on implementing all the boot phases.

• Reduce the system firmware boundary by one-third, 

which eventually results in high optimization of system 

boot time and reduction of the SPINOR footprint.
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• Having an auxiliary processor doing DRAM 

initialization prior to CPU reset and copying the 

OBB BIOS region into DRAM would provide a better 

opportunity to enforce the hardware assistant security 

rather than building security blocks using the system 

firmware.

 Summary
This chapter provided an overview of the futuristic aspects of system 

firmware. It also explained several examples of its possible usages and 

all the opportunities to design better system firmware considering 

simplicity, performance, security, and open source philosophy. After 

reading this chapter, you should have a general understanding of the 

uniqueness of system firmware and hardware design. The idea here is to 

make sure you understand where the industry might be heading in the 

future. System firmware design in the future might expect to have such 

requirements as a minimum for any boot firmware working on any SoC/

CPU architecture. The common traits across all these application examples 

of future system firmware design is the need for instant platform boot with 

reduced functionality and effective use of system resources without any 

additional cost of platform hardware. This chapter may also be useful to 

break the assumption about any BIOS or system firmware design where 

application engineers or designers might consider all the boot phases 

to be mandatory, rather to make it clear that those stages are flexible. 

Firmware designers could choose to pick the correct boot flow as per their 

platform design and hardware needs, to do meaningful and minimum 

tasks in the system firmware design to make life simple during the product 

development life cycle and after-life support as well.

Chapter 6  Looking at the Future oF SyStem Firmware



353

 APPENDIX A

The Evolution of 
System Programming 
Languages
A system programming language is a programming language that is 

used to create system software. In the context of this book, we will 

refer to this type of language while developing firmware. Firmware 

development requires you to understand the underlying hardware and 

CPU architecture. Firmware development techniques should focus on the 

optimal usage of system resources while performing critical operations 

such as using memory or system power.

Here are some characteristics of system programming languages:

• System programming languages have a great deal of 

knowledge about the underlying CPU architecture. It is 

intended to create a machine-level language that will 

execute on the target hardware.

• The programming languages created by a system 

programming language can operate in a memory-

constrained manner.
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• A system programming language can directly use the 

system memory, CPU registers, and I/O components 

without any access restriction.

• In a firmware development project, more than one type 

of system programming language may be used. For 

example, a coreboot project is a combination of C, C++, 

assembly language, ASL, etc.

• Typically, these system programming languages are 

intended to create their own libraries that allow access 

to different hardware components such as input/

output and even to specific CPU architecture.

This appendix will walk you through the journey of system 

programming language where applicable to system firmware 

development. It will underline the need for a modernized approach in 

the future.

 The History of System Programming  
Languages
Originally, system firmware was developed using assembly language. 

Assembly language is used for one-to- one resemblance of the mnemonics 

and machine language. The mnemonics are specific to CPU architecture; 

hence, assembly language needs another system program, named 

Assembler, to translate the assembly language statements into the 

machine language as per the target CPU architecture.

Assembly language was first developed in the 1950s. It eliminated the 

need for programmers to use a first- generation programming language 

and remember numeric codes and how to calculate addresses. Here are 

some advantages of assembly languages:
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• Typically, the majority of CPUs are powered on with 

a memory-constrained environment; hence, running 

early programming using an assembly language 

doesn’t require any specific infrastructure like other 

high-level system programming language demands. 

For example, running a C program makes use of the 

stack, which is set by the low-level assembly program.

• Assembly language, being a lower-level programming 

language, allows direct access to the hardware 

depending on the nature of the operations.

By the 1970s, assembly language was starting to be replaced with the 

evolution of high-level system programming languages that reduced the 

need for handwritten assembly codes with compiler-generated code. The 

knowledge of low-level hardware instructions no longer was essential 

as the high-level programming language introduced an abstraction that 

could remove the barrier of writing CPU architecture-specific code while 

performing an operation. For example, writing memcpy is much simpler in 

a high-level system programming language rather than implementing it in 

assembly.

Today, the scope of assembly language is limited only to early 

bootblock code that was intended to set the infrastructure to high-level 

programming execution or to execute specific processor instructions.

Although the scope of assembly language is limited in modern 

firmware projects, there are enormous benefits of understanding assembly 

language. In fact, it can be useful to understand any CPU architecture 

such as its register sets, memory and I/O operational model, specific CPU 

features, etc. Most high-level languages also provide an option to include 

assembly programming to perform some operations that are not possible 

without using inline assembly.
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 System Programming Languages Today
The most widely used modern system programming language, C, has been 

used for firmware development for the last 30 years. In parallel to the early 

development of the Unix operating system, the journey of C started in the 

years 1969–1973 by Dennis M. Ritchie. It was derived from the typeless 

language BCPL (grandparent) and the language B (parent), and it evolved 

as a type-based structural programming language that is suitable for 

both system software and application software. With compilers becoming 

available on every machine architecture, it omits the need for writing 

assembly code and generating efficient object programs. Therefore, C 

became a popular programming language for personal computers.

Finally, in the 1980s, the language was officially standardized by the 

ANSI X3J11 committee. Since the early 1980s, its use has spread much more 

widely so that it is clearly efficient enough to replace assembly language, 

sufficient enough to abstract the hardware as a high-level language, and 

provides specific implementation to access hardware like any low-level 

language. Undoubtedly, Unix’s use of C was important for its success.

Here are some unique features of C that make it popular today:

• C remains a simple and small language, translatable 

with simple and small compilers.

• The language is sufficiently abstract from the machine 

details; hence, a program that is written for one 

architecture can be easily migrated with minimal 

changes in the tools.

• C provides a lot of built-in functions as part of the 

central library.

• It supports the feature of dynamic memory allocation 

where a program is able to allocate or free the 

previously allocated memory.
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• Perhaps the most significant feature of C is pointers. It 

can directly interact with the memory by using pointers.

Table A-1 provides the steps for C program execution. For easy 

understanding, a programmer can remember the mnemonic EPCALL.

Table A-1. C Program Execution

Execution Step Details

Editor The programmer writes the source code using an integrated 

development environment (ide), and the entire execution flow 

starts to ensure the written program can generate a binary that is 

loaded into memory for execution.

Preprocessor The preprocessor is responsible for converting preprocessor 

directives to create an expanded source code.

Compilation The expanded source code is sent to compiler, which converts the 

source code into the assembly code.

Assembler The assembler is responsible for converting the assembly code 

into machine language. This is typically referred to as object code 

(.obj files).

Linker The object code is sent to a linker, which links it to the included 

libraries. it converts it into executable code (.exe). depending 

on the type of program, the executable format is converted into 

binary (.bin).

Loader The loader is responsible for loading the executable code into memory, 

and then it gets executed. Based on the nature of the program, it 

accesses the system resources (either software or hardware).

Now let’s take a look at the third step in the C execution flow, which is 

compilation (see Table A-2). This signifies why a programming language 

with the caliber of C was needed to replace assembly language from system 
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programming. Table A-2 is a simple C program that performs the addition of 

two numbers. Attempts to write such a program in assembly language would 

need a specific low-level knowledge of instruction set architecture (ISA) 

across different CPU architectures. The introduction of C diminished the 

need for such handwritten assembly, and programmers can be less bothered 

about understanding such low-level machine architecture differences.

Table A-2. C Program Compilation

Code Written in C x86 Assembler ARM Assembler

void main()

{

       int a = 10;

       int b = 20;

       c = a + b;

}

mov ax, a

mov bx, b

add ax, bx

mov c, ax

mov r0, a

mov r1, b

add  r2, r1, r0

mov c, r2

 The Future of System 
Programming Languages
The 21st century hardware devices are more concerned about the safety 

and security of the platform and firmware being the closest entity of the 

hardware; it’s important to ensure the system programming language that 

is being used for firmware development is safe enough. As per Common 

Vulnerabilities and Exposures (CVE) reports, in the last decade 70 percent 

of all security bugs being reported are due to memory safety issues. Tools 

and guidance are not able to prevent this class of vulnerabilities. At a 

recent conference, Microsoft and Chrome security experts acknowledged 

that the predominant system programming languages used by both 

companies are C and C++, which are unsafe languages in nature. An 

unsafe language allows full control to the developer to directly access 
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any memory address using pointers and doesn’t restrict or warn or alert 

developers when they are making basic memory management errors. 

Later, the attackers try to find those vulnerabilities and exploit them. 

Memory safety is a property of system programming languages that defines 

the mechanism for the firmware/software when dealing with memory 

access. It’s basically a protection methodology maintained by the system 

programming language. Building the firmware/software (OS kernels, 

networking stack etc.), which allows easier access to the hardware using a 

memory-safe language, will help to mitigate such problems.

System programming languages are used in modern hardware, which 

was created several decades ago when security exploitation and attacks 

were not in consideration while developing system programs. The industry 

has started exploring other opportunities for low-level system program 

development using safe system programming languages. In the 2010s, 

Graydon Hoare at Mozilla Research designed a language called Rust for 

performance and safety, especially for safe concurrency. Since then it has 

gained use in the industry, and Microsoft has also started experimenting 

with it. As part of Project Verona, Microsoft’s goal is to create a Rust-like 

safe system programming language that can help to create a safer platform 

for memory management.

The Rust programming language is designed for modern and 

future platforms where security and reliability are major concerns. It’s a 

multimodel system programming language that provides the comfort of a 

high-level programming language and still is able to provide the low-level 

control. Here are some unique features of Rust that are the reasons behind 

its continuous popularity:

• Memory safety: Typically, being vulnerable to software bugs 

is caused due by coding errors such as buffer overflows, 

no provision for boundary checks, dangling pointers, etc. 

Tools like Coverity allow static memory analysis for C to 

ensure the program is free of memory errors. The Rust 

Appendix A  The evoluTion of SySTem progrAmming lAnguAgeS



360

programming language implements a borrow checker for 

ensuring memory safety. It follows these principles:

• All variables are initiated before they are used.

• Movement of a variable value is not allowed while it 

is borrowed.

• When a variable goes out of scope, Rust 

automatically calls the drop function and cleans up 

the heap memory for that variable.

Table A-C is an example that shows both data pointers pointing to the 

same location using the C and Rust programming languages to highlight 

what the memory safety signifies and how Rust ensures safety at compile 

time rather than running into the undefined behavior error at runtime.

Table A-C. Example

Implementing Code in C

#include <stdio.h>

void main()

{

       char *src = "Hello";

       char *dst = src;

       printf("%s World!\n", src);

       printf("Writing %s World Program.\n", dst);

}

Output
Hello World!

Writing Hello World Program.

(continued)
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Table A-C. (continued)

Implementing Code in Rust

1| fn main() {

2|    let src = String::from("Hello");

3|    let dst = src;

4|

5|    println!("{} World!", src);

6|    println!("Writing {} World Program", dst);

7| }

Output
error[E0382]: borrow of moved value: `src`

  --> main.rs:5:27

   |

2 |      let src = String::from("Hello");

5 |           ---  move occurs because `src` has type 

`std::string::String`, which does not 

implement the `Copy` trait

3 |     let dst = src;

5 |                   --- value moved here

4 |

5 |      println!("{} World!", src);

5 |                                     ^^^  value borrowed 

here after move

error: aborting due to previous error

For more information about this error, try `rustc --explain E0382`.
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• Executable size: Rust uses static linking to compile 

its programs, meaning all different types of libraries 

required by the Rust program will be compiled 

and be part of the executable. Typically, when a 

C executable runs, it actually makes a system call 

that transfers control to the operating systems to 

perform the required operation. For example, when 

the C executable wants to printf a message such as 

“Hello World!” it just makes the write system call to 

the standard output. But for the Rust programming 

language, it bundles all the required standard libraries 

so that it doesn’t need to rely on OSs.

• Better access to hardware registers: Memory-

mapped hardware registers are numerous in the 

firmware programming space, and unknowingly or 

unintentionally modifying a bit might be sufficient 

to change the behavior of the hardware. Hence, it’s 

important to ensure that the compiler is able to detect 

any such scenarios where the given value is within 

the prescribed register boundary. Using a type-level 

programming to get more advanced checking on the 

memory-mapped register at compile time would help 

to make a safer system program.

• Namespaces: For any language, the names are the 

way to uniquely identify an entity and can be labels, 

variables, functions, etc. In Rust, a namespace is a 

logical grouping of declared names. It allows the 

occurrence of the same name in different namespaces 

without any conflict. For example, to maintain the 

semantics in function names in a system firmware 

project that involves cross-architectures, you need to 
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maintain different techniques in the C programming 

language such as weak symbols and NULL pointer 

checks to ensure only one instance of the function call 

is getting included. Also, it’s hard to debug and figure 

out which function is actually in use. In Rust, within 

a namespace, names are organized in a hierarchy, 

where each level of the hierarchy has its own name. 

The double colon (::) is an operator that is used to 

define the namespace. In Rust, calling arch::halt() 

is enough from the mainboard directory to resolve the 

symbol issues without any additional overhead.

The mainboard directory calls these functions:

src/mainboard/sifive/hifive/src/main.rs:154:    arch::halt()

src/mainboard/aaeon/upsquared/src/main.rs:39:    arch::halt()

The SoC directory implements the halt() function:

src/arch/riscv/rv32/src/lib.rs:9:pub fn halt() -> ! {

src/arch/x86/x86_64/src/lib.rs:13:pub fn halt() -> ! {

In the previous example, HiFive, a mainboard built around RISC-V SoC 

and upsquared, is a x86-based platform.

• Replacement of the makefile: A makefile is the set of 

instructions that you use to tell how to build your 

program. Typically, a handwritten makefile is too error-

prone as you need to instruct the machine to include a 

set of files during compilation. Many high-level system 

programming languages are trying to remove the 

handwritten makefile dependency from programmers. 

In Rust, the cargo-make task runner is able to define 

and configure sets of tasks via Cargo.toml files and run 

them as a flow.
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• Hygienic macros: For safe system programming, 

hygienic macros ensure there are no accidental 

captures of identifiers. Macros are getting preprocessed 

and expand the scope of the code prior passing the 

expanded source code to the compiler. A programming 

language embedded with a non-hygienic macro 

system has a problem where an existent variable may 

get hidden during the macro creation or even during 

its expansion, which finally would result in incorrect 

output. A system programming language that supports 

hygienic macros prevents macros from interfering with 

variables that are declared outside of the macro.

Demonstrate the Nonhygienic Macro Problem Using C

#include <stdio.h>

#define f(a,b) a*z

int main()

{

        int a = 2, b = 5, z = 3;

        printf("Multiplication Macro in `C` = %d\n", f(a, b));

        return 0;

}

Output:
Multiplication Macro in `C` = 6

in this example, after preprocessing the input variable, b is getting replaced by the 

local variable z, which results in unexpected output from this multiplication function.

Let’s rerun the same multiplication operation in Rust that supports 

hygienic macros.

Appendix A  The evoluTion of SySTem progrAmming lAnguAgeS



365

Demonstrate the Hygienic Macro Using Rust

macro_rules! f{

        ($a:expr,$b:expr)=>{

                 {

                           $a*$z

                 }

        }

}

fn main() {

      let (a, b, z) = (2, 5, 3);

      println!("Multiplication Macro in Rust = {}", f!(a, b));

}

Output
error: expected expression, found `$`

  --> main.rs:12:16

   |

12 |             $a*$z

   |                 ^^ expected expression

...

19 |     println!("Multiplication Macro in Rust = {}", f!(a, b));

   |                         -------- in this macro invocation

   |

   = note: this error originates in the macro `f` (in Nightly 

builds, run with -Z macro- backtrace for more info)

error: aborting due to previous error

The hygienic macro in rust allows metaprogramming. unlike macros in C 

languages, rust macros are expanded into abstract syntax trees, rather than just 

string preprocessing, so programmers won’t run into unexpected problems as 

illustrated earlier with the usage of nonhygienic macros.
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In summary, a safe system programming language like Rust has the 

potential to perform low-level operations when needed with efficient 

access to the hardware register, has easy memory management, and also 

provides rich libraries that makes a programmer’s job easier. In addition 

to platform security, another key area that all future firmware projects are 

continuously focusing on is system boot time. System boot time is critical, 

and there are several ways to reduce the boot time such as doing more 

operations in parallel even during the scope of system firmware. Today, 

performing parallel operations using C code might be a little risky due to 

its lack of memory safety techniques; otherwise, one of the key advantages 

of Rust as a system programming language for the future is its fearlessness 

during concurrency.
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 APPENDIX B

initramfs: A Call for 
Type-Safe Languages
Boot time is a key performance indicator (KPI) for modern computing 

devices, and development cost is an indispensable factor for calculating 

firmware development projects. Firmware is the first piece of the code that 

runs after a processor reset, and due to its privileged operation model, any 

exploits in the firmware are extremely difficult to detect. The majority of 

modern firmware development is based on the C system programming 

language, where the most skilled programmers even make simple mistakes 

that remain hidden from the compiler. These mistakes make firmware an 

ideal place for advanced persistent threats, and the system may become 

fatal to the attackers. To overcome these performance, development cost, 

and security issues in the firmware space over the past several years, the 

industry has started looking into the possibility of bringing the maturity of 

the Linux-like kernel (which is widely used and tested) to the proprietary 

firmware to establish trust in the computing system. Firmware projects 

have started accommodating embedded kernels as part of SPI Flash as a 

replacement for complex firmware drivers. This technique of embedding 

the kernels into the firmware’s trusted computing boundary could help to 

improve boot time performance and allow platform configuration. Almost 

all new firmware stacks include a multiprocessing operating system with 

drivers, various protocol stacks, and a file system. Having an embedded 
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kernel is not enough, as it needs a root file system known as initramfs 

(which stands for “initial RAM file system”). initramfs is a root file system 

that is embedded into the kernel, and when the kernel starts, it checks for 

the presence of initramfs. If it’s available then the kernel sets up a RAM 

file system and extracts initramfs into the RAM file system, so that the 

kernel can execute '/init'. The init program is typically a script-based 

implementation such as Perl Linux. In most cases, the kernel SPI Flash is 

used to boot to another kernel from the bootable media. These embedded 

root file systems contain a set of standard Unix-style programs written in C.  

Over a period of time, there have been several successful attacks against 

the C-based firmware, such as a buffer overflow issue named GHOST 

(GetHOST) in 2015 and a stack buffer overflow vulnerability allowed the 

remote attackers to induce a denial of service (crash). The more details can 

be found in the CVE-2021-3382 vulnerability report.

U-root is an embeddable root file system that is packed as an LZMA-

compressed initramfs in cpio format, contained in a Linux compressed 

kernel image (bzImage), and placed in an SPI Flash device as part of the 

payload for a boot firmware image. The goal of u-root as a root file system 

is to provide minimal binary support, unlike most root file systems, which 

embed only binaries. Typically, u-root has only five essential programs: an 

init program (that contains minimal lines of code) and four Go-compiled 

binaries. The rest of the root file system contains the source, which can be 

compiled on demand as libraries and a set of u-root source files for basic 

commands. Currently, u-root packed into the firmware space is no longer 

a support source to binary generation. All these u-root utilities correspond 

to standard Unix utilities and are written in the Go language.

Go (often referred to as Golang) is a programming language created 

in 2009 by Google. Go is a modern programming language that provides 

memory safety, garbage collection, type-safe support, concurrency 

features, and interprocess communication. Here are some of the key 

benefits of the Go programming language:
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• Fast: Go is a compiled language, which means it 

needs a compiler that converts the written code into a 

machine-level language. Brad Fitzpatrick highlighted 

at the GoCon conference in 2014 that Go in terms of 

performance is still comparable with the C language 

(although C is most efficient) but easier for developers 

to learn. Go, being a modern programming language, 

can utilize the multiprocessing nature of the modern 

computing system, which makes it performance 

efficient compared to the others, easy to learn, and 

more user friendly. Go manages to maintain a unique 

position because of its fast operation and easy-to- 

learn nature.

• Concurrency: Modern computing systems demand 

parallelized operations, and the Go language has 

built-in concurrency features. Go offers a light-weight 

process that has been implemented using a native 

goroutine; a function call prefixed with the go keyword 

starts a function in a new goroutine. Implementing 

multithreading with other languages like C is not that 

straightforward. For example, coreboot (built using the 

C programming language) has been unable to meet the 

expectation of concurrency for several decades.

• Garbage collection: Go has a strong commitment to 

garbage collection, and different Go releases have tried 

to improve the garbage collector logic.

• Mixed language: The Go language blurs the line 

between a high-level and low-level language; it is a 

high-level language, but it can be used to perform 

operations as a low-level programming language as 

needed. Having such a type-safe, high-level language 
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that can be used for low-level embedded firmware 

might make the firmware security stronger than the 

user programs because an efficient static compiler 

might nullify all possible firmware-level exploits.

• Open source: Go is an open source programming 

language that makes it easy to build reliable and 

efficient software. Developers can get many useful 

libraries readily available at https://golang.org/pkg/ 

for use.

In response to increasing security concerns on embedded devices, 

u-root was developed using the Go language, a modern language that 

provides memory safety, that was developed with minimal binaries and 

that delivers fast operations (the response time is about a millisecond 

while compiling the source to binary). The initial layout of a u-root file 

system is described as follows: the /src directory contains a set of u-root 

source files for basic commands such as cat, cmp, date, etc. The /go/

bin directory is for any Go tools built after boot; the /go/src/ for source 

package and toolchains is needed for these programs; the /go/pkg/tool/ 

directory contains binaries for supporting the target OS and architecture, 

and one init binary. When a Linux kernel starts, it locates initramfs, sets up 

a RAM file system, and extracts initramfs into the RAM file system. Finally, 

the kernel starts the /init process, and the init binary as part of u-root 

sets up some basic directories, symlinks, and files and builds a command 

installer. u-root can create an initramfs file system in two different modes.

• Busybox mode: One busybox-like binary comprises 

all the Go tools that users are asked to include. In this 

mode, u-root copies and rewrites the source of the tools 

that the user was asked to include to be able to compile 

everything into one busybox-like binary. This is the 

only supported mode for the firmware.

Appendix B  iniTrAmfS: A CAll for Type-SAfe lAnguAgeS

https://golang.org/pkg/


371

• Binary mode: Each specified binary is compiled 

separately, and all binaries are added to initramfs.

u-root is the initramfs file system for the LinuxBoot project. The user 

can then boot to the kernel using kexec from a block device or over a 

network. u-root contains boot policy tools, also written in the Go language 

that supports fbnetboot and localboot.

The benefits of the Go language are that it is simple, fast, secure, 

type-safe, and concurrent. Additionally, when developing initramfs using 

u-root over traditional scripts, compared to a fixed set of commands being 

available, this approach of having source code as part of a binary while 

doing a firmware project provides more flexibility to create new commands 

using on-demand compilation. Further, init could build a special shell at 

boot time that pulls in built-ins to extend the shell without modifying the 

whole binary.

Appendix B  iniTrAmfS: A CAll for Type-SAfe lAnguAgeS



373© Subrata Banik and Vincent Zimmer 2022 
S. Banik and V. Zimmer, Firmware Development,  
https://doi.org/10.1007/978-1-4842-7974-8

 Glossary

ACPI Advanced Configuration and Power Interface

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB AMBA Advanced Peripheral Bus

APCB AMD PSP Control Block

AXI-AP AMBA AXI Access Port

BBS BIOS Boot Specification

BCT Binary Configuration Tool

Blobs Binary Large Objects

BMC Baseboard Management Controller

BSP BootStrap Processor

CBI CrOS Board Info

CCD Closed Case Debug

CoC Code of Conduct

CodeXL A comprehensive tool suite used on AMD-based platforms 

to access the CPU, GPU, and APUs with a single program

CPU Central Processing Unit

CrOS Chrome/Chromium OS

CSP Cloud Service Providers
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DCI Intel Direct Connect Interface

DTB Device Tree Blob

DTC Device Tree Compiler

DTFS Device Tree File System

EC Embedded Controller

EDKII A modern, feature-rich, cross-platform firmware 

development environment for the UEFI and UEFI Platform 

Initialization (PI) specifications

ELF Executable and Linking Format

FD Firmware Device

FRU Field Replaceable Unit

FSP Firmware Support Package; a specification designed with a 

standard API interface to perform silicon initialization and 

provide information to the boot firmware

FV Firmware Volume

GCC GNU Compiler Collection

GDB GNU Debugger

GDT Global Descriptor Table

Gerrit A code review and project management tool for Git-based 

projects

Git An open source version control system

GitHub A web-based version control repository hosting 

service for Git

GOP Graphics Output Protocol

HII Human Interface Infrastructure

gloSSAry
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ICMB Intelligent Chassis Management Bus; provides a standardized 

interface for connecting satellite controllers and/or BMC in 

another chassis

IDE An integrated development environment used for software 

development

IFR Internal Forms Representation

IPMI Intelligent Platform Management Interface

JTAG Joint Test Action Group, an industry standard for verifying 

the hardware design

KVM Keyboard-Video-Mouse

MP Multi-Processor

MTRR Memory Type Range Register

OpenTitan An open source project for building a transparent, high-

quality reference design and integration guidelines for 

creating silicon root of trust (RoT) chips

OpROM Option ROM

OS Operating System

PEI Pre-EFI Initialization

PI Platform Initialization

PIC Position Independent Code

PPI PEIM to PEIM Interface
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Rings Used to define the criticality or privilege level that different 

system components use to operate on the host system; On 

IA architecture Ring 0 is considered the most privileged 

operation and typically the kernel is operating in that ring, 

whereas on the ARM platform, Ring 3 is considered the most 

secure and involves running secured firmware from SoC 

vendors, Secure Monitor, and Trusted ROM firmware

RunBMC A smarter, simpler, open approach to out-of-band 

management for servers

Rust A modern system programming language designed for 

performance and safety, especially safe concurrency

SCM Source Control Management

SDK Software Development Kit

SFF Small Form Factor

SMBUS System Management Bus

SoC System on Chip

SSH Secure Shell

SVN Subversion

SW-DP Serial Wire Debug Port

SWD Serial Wire Debug

SWJ-DP Serial Wire/JTAG Debug Port

TTM Time-To-Market

TXT Trusted eXecution Technology

u-bmc An open source firmware for baseboard management 

controllers

UEFI Unified Extensible Firmware Interface
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UPD Updatable Product Data; a data structure that holds 

configuration regions that are part of the FSP binary

VBE VESA BIOS Extensions

VBIOS Video BIOS; used to program either onboard graphics 

or discrete graphics card and is specific to the device 

manufacturer

VCS Version Control System

VESA Video Electronics Standards Association

VFR Visual Forms Representation

VNC Virtual Network Computing

WinDbg Windows Debugger

XDP eXtended Debug Port

XIP eXecute-In-Place

ZBL Zeroth Stage Boot Loader; an SoC bootloader for RISC-V 

that loads an ODM/OEM bootloader from the SPI Flash
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