
Firmware
Development

A Guide to Specialized Systemic
Knowledge
—
Subrata Banik
Vincent Zimmer

Firmware
Development

A Guide to Specialized
Systemic Knowledge

Subrata Banik
Vincent Zimmer

Firmware Development: A Guide to Specialized Systemic Knowledge

ISBN-13 (pbk): 978-1-4842-7973-1 ISBN-13 (electronic): 978-1-4842-7974-8
https://doi.org/10.1007/978-1-4842-7974-8

Copyright © 2022 by Subrata Banik and Vincent Zimmer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Jessica Vakili
Copyeditor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY
Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on the Github repository: https://github.com/Apress/Firmware-Development. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Subrata Banik
Bangalore, Karnataka, India

Vincent Zimmer
Issaquah, WA, USA

https://doi.org/10.1007/978-1-4842-7974-8

iii

Table of Contents

About the Authors ���vii

About the Technical Reviewer ���ix

About the Foreword Author ���xi

Foreword by Christian Walter ��xiii

Preface ���xv

Acknowledgments ���xix

Introduction ���xxi

Chapter 1: Spotlight on Future Firmware ���1

Migrating to Open Source Firmware ���3

Ring -1: System Firmware ���5

Ring -2: System Management Mode ���5

Ring -3: Manageability Firmware ��6

Open Source System Firmware Development ��10

Hybrid System Firmware Model ��12

Open Source System Firmware Model ��47

Open Source Device Firmware Development ��69

Legacy Device Firmware/Option ROM ���71

UEFI OpROM ��77

Why Is Open Source Device Firmware Needed? ���82

iv

Open Source Manageability Firmware Development ��84

Baseboard Management Controller ���88

Zephyr OS: An Open Source Embedded Controller Firmware
Development ���102

Summary���126

Chapter 2: Tools ��129

Build Tools ���132

EDKII Build Tools and Process ���134

coreboot Build Tools and Process ��149

Configuration Tools ���162

Human Interface Infrastructure ���163

YAML-Based Configuration ��166

Firmware Configuration Interface ��168

Binary Configuration Tool (BCT)/Config Editor ���170

Flashing Tools ���171

Hardware-Based Tools ���172

Summary���174

Chapter 3: Infrastructure for Building Your Own Firmware ��������������177

Overview of Source Control Management ��178

Version Control System ���179

Version Control Repository Hosting Service ��200

Code Review Application ���203

Best Known Mechanism of Source Code Management �������������������������������208

Code of Conduct ��210

Coding Standard ���212

Indentation ��214

Maximum Columns per Line ��215

Table of ConTenTs

v

Using Braces ���216

Need for Spaces ��217

Naming Conventions��218

Typedefs ��219

Commenting ��220

Write a Good Commit Message ���221

Summary���225

Chapter 4: System Firmware Debugging ��227

Hardware-Assisted Debugging ���233

Generic Debugging ��234

SoC-Specific Debugging ��238

OxM-Secific Debugging ���256

Software-Assisted Debugging ��261

Traditional Breakpoint ���261

I/O-Based Checkpoint ��262

Serial Message or Serial Buffer ���265

Preboot Environment ���266

ACPI Debug ��267

Windows Debugger ���268

GNU Debugger ���270

Summary���272

Chapter 5: Security at Its Core ���273

Revisiting the Definition of Firmware with a Security Mindset �������������������������276

Why Is Firmware Security Required? ��277

Platform Configuration for Firmware ��286

Firmware with Security Mindset in a Computing System ���������������������������287

Summary���303

Table of ConTenTs

vi

Chapter 6: Looking at the Future of System Firmware ���������������������305

Designing LITE Firmware ��309

Design Principle���313

Conclusion ���325

Designing a Feature Kernel ���326

Design Principle���328

Conclusion ���329

Design Multithreaded System Firmware ���330

Design Principles ���334

Conclusion ���341

Innovation in Hardware Design ���342

Design Principles ���344

Conclusion ���351

Summary���352

 Appendix A: The Evolution of System Programming Languages ������353

 The History of System Programming Languages ��354

 System Programming Languages Today ���356

 The Future of System Programming Languages ���358

 Appendix B: initramfs: A Call for Type-Safe Languages �������������������367

 Glossary ��373

 Reference ��379

 Websites ���379

 Books, Conferences, Journals, and Papers ���383

Index ���385

Table of ConTenTs

vii

About the Authors

Subrata Banik is a firmware engineer

with more than a decade of experience

in the computer industry, with hands-on

experience in system firmware design,

development, and debugging across various

firmware architectures like UEFI, coreboot,

Slim bootloader, etc., for the x86 and ARM

platforms. Subrata has extensive experience on

platform enablement, which led to working for

all the leading PC makers’ products. Subrata

is an active member of open source firmware

(OSF) development across different projects

like coreboot, oreboot, flashrom, EDKII, etc., where he is one of the leading

contributors in open firmware (coreboot) development. Subrata holds

multiple U.S. patents and is passionate about learning new technology

and sharing knowledge with enthusiast engineers. Subrata has presented

his technical talks at industry events such as the Open Source Firmware

Conference, Institute for Security and Technology, Intel Developer Forum,

and more.

When not writing or working, he enjoys watching sports (especially

football) and spending time with his daughter. A fun fact about Subrata is

that he is a strong believer in the existence of time travel.

You can chat with Subrata on Twitter (@abarjodi) or at https://www.

linkedin.com/in/subrata- banik- 268b3317/.

https://www.linkedin.com/in/subrata-banik-268b3317/
https://www.linkedin.com/in/subrata-banik-268b3317/

viii

Vincent Zimmer has been working on

embedded firmware for the last 30 years.

Vincent has contributed to or created firmware

spanning various firmware initiatives,

including the Extensible Firmware Interface,

where Vincent presently leads the Security

subteam in the UEFI Forum. Vincent has also

co-authored various papers and books, along

with being a named co-inventor on more than

450 U.S. patents.

abouT The auThors

ix

About the Technical Reviewer

Ron Minnich is a software engineer at Google.

He has been writing firmware for 40 years,

starting with the z80 and 6800. He’s also

a long-time contributor in the Unix, BSD,

Plan 9, and Linux communities. He started

the LinuxBIOS project in 1999, which was

renamed to coreboot in 2008 and is now used

in tens of millions of Chromebooks. His most

recent effort, LinuxBoot, is now part of the

Linux Foundation and aims to bring the benefits of a full Linux kernel to

several firmware environments, including coreboot, u-boot, and UEFI.

xi

Christian Walter is a firmware engineer who

started working with open source firmware

five years ago. Christian is passionate about

open source and is heavily involved in

various open source firmware projects like

coreboot, LinuxBoot, and EDKII for different

architectures.

Christian is the cofounder of the Open

Source Firmware Foundation and is actively

involved in defining specifications around open source firmware. He is

part of 9elements, which is one of the main contributors within the open

source firmware ecosystem driving the community into an open world.

Christian has been involved in multiple technical talks around open

source firmware and its development model for the industry, and he has

held multiple talks around testing and building an ecosystem for open

source firmware.

You can connect with him on Twitter (@nablahero).

About the Foreword Author

xiii

Foreword by Christian Walter

Nowadays, firmware is one of the most critical parts within every device

and every security concept. Typically, x86 firmware is hidden from the

user, and little to no interaction is needed. Firmware has been closed

source for the last 20 years. Whereas there are some exceptions to the

general rule, the core parts of firmware are and will most likely remain

closed source in the near future. From an outside perspective, this is not

logical. Today, most of the software stack running on x86 platforms can

be open sourced, beginning from the bootloader through the operating

system up to the application level. Large hyperscalers make open source

a requirement for some parts, and consumers love the freedom that open

source software provides to them. Firmware is the last bastion that has not

fallen. However, in recent years, the open source firmware community has

leaped forward; thus, the industry is changing. Hyperscalers adopt open

source firmware as the de facto firmware standard, and customers can buy

open source firmware-enabled products off the shelf.

The idea of open source is not to open up the existing code base. It is

rather about giving the community the ability to develop and maintain

the code themselves. Two things are needed to reach this goal: sharing

knowledge and providing the technical documentation. Obviously,

both influence each other. Technical documentation is something that

hardware vendors, OEMs, and ODMs can provide and are responsible for.

This documentation enables developers to write the actual code and thus

produce and maintain open source firmware. It is impossible, or at least

extremely complicated, to write proper firmware code without technical

documentation. Technical documentation is not about opening up the

xiv

intellectual property but rather providing a path to bring up and configure

the hardware components.

In addition, the community needs knowledge and experienced people

who share this knowledge. Sharing knowledge enables others to become

firmware developers, to understand the concepts, and ultimately to grow

the community. Firmware and its development are among the most

complex software systems a developer can dive into. Even though most of

the components themselves are not complicated, the interaction between

them makes it complex. Keeping this technical documentation closed

source makes the components (unnecessarily) complicated.

This book shares some of the missing pieces in system firmware

development and guides the reader through various topics. We are

engineers who are passionate about open source and driving this effort

forward.

foreword by ChrisTian walTer

xv

Preface

Firmware is the first piece of code that runs on the target hardware after

the end user has turned on a device. Depending on the types of target

hardware, the operations being performed by the firmware may differ, but

the fundamental operations of firmware remain the same across the target

hardware: performing the bare minimal hardware initialization and either

waiting for host-centric communication to initiate or handing off control to

the high-level system software that allows the end-user interaction. Based

on the target market segment, an OS can have multiple virtual machines,

and/or various types of applications are installed that satisfy the end-user

needs. Although the control goes to the OS, an instance of the firmware

is still alive and available to manage a few critical tasks that for OS-based

applications or drivers cannot perform.

Over time, CPU architectures have gotten more complicated, and

platform requirements have evolved. This has pushed the firmware

boundary and caused firmware to extend its services too.

Back in the 1950s, the only possible way to instruct a computer system

to perform some operation was using assembly language. The processors

were simple enough, and hence the expectations from the firmware were

also minimal. Porting to different kinds of CPUs involved redundant effort.

In the 1970s, with the evolution of microprocessors, which demanded

the enhancement of firmware features, all firmware development started

migrating to the low-level system programming language C. Later C

became the de facto standard for firmware development as it’s easily

ported from one generation to the next. Since then, a different flavor of

xvi

a C-based proprietary technology or framework evolved that made the

hardware programming easier and created an abstraction such that it’s

easy for programmers to contribute to the system programming without

a deep understanding of the hardware. When technology evolves in an

enclosed environment like this, it actually limits the spread of specialized

knowledge and positively affects the entire ecosystem.

In the 2010s, access to the Internet became cheaper, and hence

demands for personal computing devices were booming. With new sets

of devices becoming popular, the ecosystem was changing. Statistics

suggest that between 2000 and 2019 in the United States the number of

Internet users tripled. Having more computing devices meant demand

for advanced user experiences. For example, an instant system response

refers to less device latency, trillions of data transfers in seconds requires

secure systems, and more users means the backend server capacity needs

to be enhanced. These are all the driving forces for the industry to look

beyond the traditional system development model and demand more

transparent development of the system, be it hardware, firmware, or

software. With the openness in the firmware development approach, many

product differentiating ideas are evolving and intercepting in firmware

which are enough to challenge the existence of traditional System

Firmware development approach. This demands a revamp of the firmware

development model. We wrote this book to be a bridge from the present

firmware development model to the future and make sure the readers

are well equipped with such knowledge that makes them ready for such a

migration in future.

In other words, we wrote this book for people who want to learn

about the future of firmware and prepare themselves with all required

knowledge to excel. This book covers the essential knowledge that is

required for a firmware developer, debug engineer, testing or validation

engineer or even someone is working in a project as a DevOps engineer.

Chapters 2 to 4 cover the specialized systematic knowledge needed for

PrefaCe

xvii

firmware development. Chapter 6 illustrates the concepts that are relevant

for future development and can be learned by analyzing end-user use-

case scenarios. The concepts presented as part of this book are based on

practical results, and the data illustrates why we believe those ideas will

definitely merge into the product line in the future. We present a large

number of examples that are aligned to system firmware development as

many developers have visibility into this area compared to other firmware

developments.

PrefaCe

xix

Acknowledgments

Understanding firmware development is key before venturing into

low- level hardware-centric projects. The topic requires subject-matter

experts to share their journey with new engineers. This book involved

contributions from talented industry experts who we were honored to

work with, and they deserve acknowledgement.

We would like to thank Kumar N. Dwarakanath for his significant

contribution in preparing Chapter 5. Understanding firmware security

is essential knowledge, and we know our audience will benefit from his

contributions.

Subrata thanks Vincent Zimmer, Ronald G. Minnich, and Stefan

Reinauer for their expertise and making this venture enjoyable and

learnable. Above all, Subrata is thankful to his family, especially his wife,

Barnali, and daughter, Samriddhi, who were patient with many nights and

weekends consumed by this effort, and his parents, who influenced him to

translate his technical curiosity into a book.

Vincent thanks Subrata for the great collaboration on this project

and in other endeavors. Along with Subrata, he would also like to thank

collaborators across different communities, standards groups, and his

employer.

xxi

“Learning never exhausts the mind.”

—Leonardo da Vinci

The era that we are currently living in is famous for its continuous

evolution; things around us are changing quite rapidly, legacy

technologies are fading over time, and modern development ideas are

mature enough to fill the void. The only constant in this volatile world is

continuous learning. Albert Einstein said it best: “Once you stop learning,

you start dying.”

A study suggests that people who are actively involved in continuous

learning and have passion toward learning something new are able to

connect well with an industry that is migrating toward newer technology,

compared with other who rely on a narrow set of skills and experiences.

There are lots of materials available on the Internet that motivate people to

start engaging in development activity without even paying attention to the

details of the technology such as its architecture, intrinsic operations, and

interfaces that are used while communicating with other components to

define a complete system.

Focusing on depth while learning will help to expand the scope of

learning. For example, understanding system firmware in depth will help

to understand the working operational model of an operating system

due to its interface with underlying firmware, realize different hardware

components while initializing, and recognize the value of the compiler,

toolchains, and so many other components that are an extrinsic part of

firmware being operational. It also helps to level up and look beyond

the traditional boundary of existing offerings to discover something that

Introduction

xxii

is more applicable for future needs. The value of in-depth knowledge is

something that can easily be described as the deeper the roots, the greater

the fruits. Like a gardener who nurtures a sapling and creates a tree for

tomorrow, we have prepared the soil for harvesting using our previous

book, System Firmware: An Essential Guide to Open Source and Embedded

Solutions. The purpose of Firmware Development: A Guide to Specialized

Systemic Knowledge is to cultivate on that foundation and anchor the

developers’ journey into the firmware world.

Firmware Development is not intended to teach any particular

programming language (except for the appendix that highlights the

evolution of system programming languages) or method that can be used

for developing firmware. Rather, this book explains the operational model

of different technologies or frameworks being used for developing various

types of firmware. Firmware is an essential entity that is used to bring all

forms of hardware to life. Additionally, the book will prepare its readers to

be ready for a future of possible architecture migration and understand the

need to adopt a different framework or technology over the conventional

approach that best meets the product’s need.

Over time, device manufacturers and consumers have started realizing

the power of developing a transparent product development ecosystem

where components that are combined to create a computing system are

visible enough. It helps to remove the dependency from a limited group

of people and make the scope wider where things can be taken care of

differently. For example, over the years firmware layers are preferred for

making awful workarounds due to limited or even no visibility into the

operating system and its driver operational model. This might induce

unwanted latency while the device transitions between different system

states. Traditionally, computing devices were developed with proprietary

firmware, which limits innovation and restricts the essential knowledge

of the system. Firmware is the closest possible entity to the hardware, and

the best way to learn system knowledge is by exploring the hardware and

inTroduCTion

xxiii

firmware communications. Unless the firmware development is open, it

will always remain under the influence of a specific group that decides

what goes into certain hardware.

Let’s take a real-world example of Baseboard Management Controller

(BMC) firmware development. For several years, the BMC firmware

was developed using proprietary source code, and its innovation was

also limited until 2014 when Facebook created a prototype open source

BMC stack named OpenBMC. In 2018, OpenBMC became a Linux

Foundation project. The introduction of OpenBMC on the server platform

also influenced the industry and gave birth to u-bmc (u-bmc is a open

source firmware for baseboard management controllers, or BMCs)

and RunBMC (RunBMC is a smarter, simpler, open approach to out-

of- band management for servers). The key highlight that we would like

to emphasize here is the evolving nature of firmware. You should start

preparing yourself to gain the required knowledge that makes you ready

for any such architecture migration.

Firmware Development is based on two firmware engineers’ real-

world experiences, and the book captures the specialized systemic

knowledge that typically a firmware engineer needs to possess after the

base foundation is created. In a software project development cycle,

development is one of the key pillars that is being highlighted, but there

are other essential components that remain cloaked, and without them,

the project development might not be productive. A software project cost

evaluation model suggests that the cost of debugging, integration, testing,

and verification is estimated at 50 to 75 percent of the total budget. This

book includes those components as part of specific chapters and stresses

the value of having specialized knowledge.

Additionally, this book simplifies the need to enforce firmware security

as firmware is the most privileged entity of the system stack. Modern

systems on chip (SoC) are getting complicated, and typically a computing

system has multiple firmware to manage during boot, implements a

robust upgrade methodology to ensure the system never goes out of

inTroduCTion

xxiv

maintenance, and has the provision to comprehend any bug fixes through

firmware updates. Hence, it’s important to build the security principles for

the platform, and it’s essential that all firmware ingredients adhere to the

principles without failure to define a sustainable security solution.

This introduction gives an overview of the firmware development

model and expectations for future firmware and also describes what

readers can expect in the remainder of this book.

 Identifying a Better Firmware
Development Model
Firmware development is considered essential knowledge that can bring

hardware to life. While the user presses the power button or connects the

power supply to the computing system (be it consumer, industrial, and/

or data centers), an autonomous entity called firmware starts its execution

and performs the essential hardware initialization prior to handing

over power to the higher-level software like the operating system. In a

computing system, there are various types of firmware that exist; one can

assume that almost each independent hardware block that belongs to the

computing system contains firmware. Depending on the complexity of

the operation that the hardware block performs, it contains a Boot ROM

(which is typically nonupdatable in-field) and/or a updatable firmware if

the hardware block has its dedicated nonvolatile storage or shares it with

the other components on the motherboard. Being the device manufacturer

or system integrator or owner of the device, it’s the fundamental right to

know what is running on the device. It’s also a prevailing reason to have

visibility into firmware development as firmware is running at the utmost

privileged layer, and several vulnerabilities have been reported in past

years due to compromised firmware.

inTroduCTion

xxv

The minimal expectation for future firmware is to have visibility into its

operational model and empower firmware wizards to build and boot their

target hardware with it. The objective is to be able to configure all possible

hardware knobs using the open source system firmware. It’s important to

ensure that in case the silicon firmware block is not instantly available in

the open source to meet the primary objective but still the open source

firmware development effort is unblocked by adhering to a standard

specification that defines the interfacing requirement between various

firmwares and documents its basic operational model.

The future of firmware development can be predicted as it might not

only be limited to the low-level firmware programming language and its

technique rather it might start migrating towards the advanced or

high-level programming languages. Also, future firmware may have a

smaller firmware boundary and extended trusted boundary beyond

firmware to use the powerful kernel as a replacement of the advanced

firmware stage that maximizes the code reusability across platform

components (i.e., low-level firmware and high-level software), running

more validated code on top of the hardware with confidence. For example,

the OpenBMC image contains a bootloader (u-boot), a Linux kernel,

open source and board- specific packages. oreboot is another open source

firmware, written in Rust, that has support for booting an ASpeed AST2500

ARM BMC. Many internet devices have adapted to open source device

firmware as well. For example, the TP-Link and Xiaomi router firmwares

are derived from OpenWrt, an open source firewall/router distribution

based on the Linux kernel.

 Motivation for This Book
This book provides the specialized knowledge that an engineer needs

to have while working on a low-level hardware project. It’s presumed

that a person working on a overall system development or on firmware

inTroduCTion

xxvi

development, validation, and/or integration should equipped with

essential knowledge of the computer architecture; several hardware blocks

like memory, I/Os, bus, etc.; and specific firmware interface knowledge

such as ACPI, SMBUS, Device Tree, etc., to be able to communicate with

the operating system. System Firmware: An Essential Guide to Open Source

and Embedded Solutions, from the same authors, creates that foundation.

The current book in your hands covers the specific knowledge that

engineers might encounter while working on day-to-day tasks such as the

following:

Firmware development: Having architecture

knowledge is essential, but outcomes from that

knowledge are also expected. An engineer needs

to understand what it takes to create the firmware

that can boot on the target hardware. Hence,

understanding different technologies is important.

Build tools: Writing a firmware module wouldn’t

be enough to solve a problem unless developers

understand what it takes to convert this piece of

source code into executables that runs on the device

while it’s powering on.

Configuration: Having a solid testing and

verification infrastructure is crucial for a product to

meet its quality milestones and claim to be a best-

in- class product that has negligible user-visible

defects. In hardware-driven project development,

a lot depends on validation to ensure all possible

hardware interfaces are operational to meet the

wider user requirements. Hence, every firmware

is expected to provide a possible configuration

inTroduCTion

xxvii

option during product development that allows

configuration of all possible hardware interfaces.

Source control management (SCM): In an

organization that has more than one developer

working on the project or that wants to maintain the

source code in a more structured way, one needs to

understand the value of source code management.

As the majority of future firmware development

models are expected to adapt the open source

model, it’s kind of inevitable to avoid the need to

have SCM for firmware development.

Developing the open source mindset: In the future,

the majority of firmware product development will

be breaking its internal-only development model

and starting to adapt to the culture of upstreaming

(a term typically used in open source development,

which suggests that downstream forks of the project

are also contributing into the source). Based on

our personal experience, this requires a change in

mindset. Working on open source projects demands

persistence toward solving a problem, which is

entirely different than working on proprietary source

code where no one has visibility into what the

developers check in at the end of the day. Statistical

data shows that people working or learning in open

environments have a wider and more diverse social

circle. Open source firmware development helps to

network with industry leaders (by attending various

conferences throughout the year or listening them

weekly basis during open forum that discuss the

scope for firmware improvement) who are providing

inTroduCTion

xxviii

the vision as technologies are evolving rapidly.

This book highlights the best-known practices that

one should have while working on an open source

project.

Knowledge of debugging: According to a CVP survey,

a programmer typically spends 49.9 percent of

their time debugging. Debugging is an art that

can come only with an in-depth understanding

of the domain and technology. Most of the time,

engineers are short of ideas about what it takes to

start debugging a defect. A skillful debug engineer

always keeps their arsenal full of key tools (which

can be hardware and/or software depending on

the nature of the defaults). Also, there is no rule of

thumb for debugging, and the debug methodology

is also widely varied among different architectures.

Chapter 4 covers the different debug techniques

that can be used while debugging system firmware

defects, describes the architecture of different

hardware-based debugging tools applicable across

architectures, and illustrates certain real-world

scenarios where developers can apply those tools.

The purpose of the book is to give engineers the more specialized

knowledge that is required to build their own system firmware for target

embedded systems. As specified, the book includes knowledge that

is specific for firmware development like understanding the firmware

build procedure that involves compilers and toolchain knowledge,

understanding the need for product-specific utilities, integrating the

several pieces of the firmware and allowing configuration, updating the

firmware, creating a development infrastructure for allowing multiparty

collaboration in firmware development, and debugging advanced system

inTroduCTion

xxix

firmware. This book covers such advanced knowledge to ensure readers

assume better control while developing their own firmware and interacting

with native hardware while debugging. Additionally, it provides guidance

for developing secured system firmware for the target hardware.

After reading this book, you will be ready for the future with this

specialized systemic knowledge as well as understand key principles for

developing future firmware using newer technology.

 Who Is This Book For?
This book is related to embedded system and firmware programming

models. Readers are expected to be comfortable with low-level

programming languages such as assembly and C. A few topics require

specific knowledge on UEFI technology and an understanding of modern

programming languages like Rust and Go.

As this book will focus on advanced firmware development, the

expectation from its audience is to have an essential understanding of

system firmware, its architecture, and basic hardware. If you don’t already

understand these topics, read System Firmware: An Essential Guide to

Open Source and Embedded Solutions from the same authors.

Firmware development is a unique art, and the wider the audience, the

better the scope of evolution in technology; hence, the target audience of

this book ranges from students interested in STEM topics to recent college

graduates working on developing skill sets as per the market needs to

embedded firmware/software engineers wanting to improve their skill sets

to be ready for any architecture migrations in the future.

Also, it would be benefitting for engineers currently working in open

source firmware development.

inTroduCTion

xxx

The book will do the following:

• Describe different types of firmware that a computing

system is typically equipped with, such as system

firmware (running on the host CPU), device firmware

(firmware running on peripherals attached with

motherboard), and manageability firmware (the

firmware part of special hardware that allows out-of-

band access into the computing system).

• Explain the current working model of the different

firmware types and analyze the scalable firmware

development model in the future that provides the

required visibility into the most privileged stack

running on computing systems.

• Describe the infrastructure required for creating

your own firmware for targeted hardware. This book

explains the build procedure of different technologies

being used while creating system firmware.

• Highlight the importance of proper infrastructure for

seamless firmware development where multiple parties

can collaborate.

• Debugging is a fine art. The expectation from this book

is that you will be able to understand the different

debug tools used across architectures and learn the

different debugging methodologies used during various

phases of firmware product development. It will help

engineers to develop their skills to easily distinguish a

defect between various components of a system and

prepare a debug environment for the root cause of the

defects.

inTroduCTion

xxxi

• Understand the definition of platform security and

how much of it is actually dependent on underlying

firmware. Firmware is the initial code block that runs

immediately after power-on; hence, defining the trust

in firmware is the minimal requirement for calling a

system secure.

• Set up key expectations for future firmware, including

thinner firmware footprints and faster execution

time, easier configuration, and increased transparent

security.

 Overview of the Book
In general, this book assumes readers are reading the chapters in

sequence, where each chapter builds on a knowledge block gained from

earlier chapters. As the book progresses, we will look at the application of

that knowledge.

Chapters can be divided into two categories: concepts and application.

In the concept chapters, readers will learn about various aspects such

as understanding the different types of firmware, using various types of

tools required for firmware projects, building project infrastructure, and

realizing the need for firmware security to ensure a secured system. In the

application chapters, we’ll build a few applications using the knowledge

learned from the concept chapters.

Spotlight on Future Firmware: Chapter 1 covers a subset of the total

number of firmwares that exist on a typical computing system. (System

Firmware: An Essential Guide to Open Source and Embedded Solutions

provides the specific details on the boot firmware and payload.) Chapter 1

is like a spotlight on the other firmwares such as device and manageability

inTroduCTion

xxxii

firmware along with system firmware. It explains the different technologies

being used in modern firmware development and highlights that several

firmware development models are transitioning from closed source to

open source in the future.

Tools: Chapter 2 focuses on the details on various types of tools that

a user should be equipped with while creating their own firmware. It

includes the following:

• Build tool: Developing source code and converting it

into the final binary that can be flashed on the SPINOR

involves several intermediated steps and involves

various tools.

• Configuration tool: The need for configuration tools

becomes inevitable when firmware development

follows the hybrid work model as explained in

Chapter 1. The need for configuration tools increases

when the ability to modify the source code is limited

during product development.

• Flashing/update tool: There might be several instances

where product integrators or users would like to update

the preflash boot firmware without the hardware-based

utilities.

Infrastructure for Building System Firmware: Chapter 3 provides an

infrastructure overview required for open source firmware development.

In this process of firmware migration, knowing the correct infrastructure

and setting it up is required for efficient communication during the

firmware development process. Additionally, defining the correct

standards for open source firmware development is important to support

seamless architecture migration without any additional cost (in terms of

effort and time).

inTroduCTion

xxxiii

System Firmware Debugging: Chapter 4 explains the different

debugging methodologies used in boot firmware such as legacy methods,

advanced software-based debugging, hardware-based debugging, source

code debugging, etc.

Security at Its Core: Chapter 5 covers that firmware is closed to

hardware and explains how abstracting the operating system from

the underlying hardware provides another reason to ensure the

communication channel is secure. This chapter focuses on designing the

boot firmware, keeping security in mind.

The Future of System Firmware: Chapter 6 shares knowledge for

creating firmware based on the market need. This chapter will discuss a

few futuristic proposals and their implementation details to reduce the

firmware boundary by adopting these principles: performance, simplicity,

security, and open source.

The appendixes support the claim that firmware development in the

future is looking into the possibility of high-level system programming

language adaptation.

The glossary and index are applicable for connecting back to the

main topics.

inTroduCTion

1

CHAPTER 1

Spotlight on Future
Firmware

“In real open source, you have the right to control your
own destiny.”

—Linus Torvalds

When purchasing a computing device, users are concerned with the

hardware configuration of the device and whether it has the latest versions

of the software and applications. Most computer and consumer electronics

device users don’t realize that there are several layers of programs that run

between the user pressing the power button of the device and when the

operating system starts running. These programs are called firmware.

Firmware is responsible for bringing the device into its operational

state and remains active while the OS is running, even when the device

is in low-power mode. A computing system, irrespective of consumer,

server, or IoT type, contains many different types of firmware. Firmware

that runs on the host CPU is known as system firmware, and firmware that

is specific to devices is called device firmware. In addition, there are other

microcontrollers being used to manage the device, and firmware running

on those controllers is called manageability firmware. The firmware code

that runs on these devices has certain responsibilities prior to handing

over control to the higher-level system software. For example, the system

© Subrata Banik and Vincent Zimmer 2022
S. Banik and V. Zimmer, Firmware Development,
https://doi.org/10.1007/978-1-4842-7974-8_1

https://doi.org/10.1007/978-1-4842-7974-8_1

2

firmware upon platform reset is the main interface for initializing CPUs,

configuring the physical memory, communicating with peripheral devices,

and finally picking the OS loader to boot an operating system. Every

computing device is equipped with peripherals such as input and output

devices, block devices, and connectivity devices. While system firmware is

focusing on the host CPU and its associated interface initialization, device

firmware has started its execution either by executing a self-start program

or by waiting for an initiation command from the system firmware to

become operational. Figure 1-1 shows an overview of typical computing

system (consumer or server) firmware.

Figure 1-1. Typical computing system firmware inventory

Recent research from the LinuxBoot project on the server platform

claims that the underlying firmware is at least 2.5x times bigger than

the kernel. Additionally, these firmware components are capable. For

example, they support the entire network stack including the physical

layer, data link layer, networking layer, and transportation layer; hence,

firmware is complex as well. The situation becomes worse when the

Chapter 1 Spotlight on Future Firmware

3

majority of the firmware is proprietary and remains unaudited. Along

with end users, tech companies and cloud service providers (CSPs) may

be at risk because firmware that is compromised is capable of doing a lot

of harm that potentially remains unnoticed by users due to its privileged

operational level. For example, exploits in Base Management Controller

(BMC) firmware may create a backdoor entry into the server, so even if a

server is reprovisioned, the attacker could still have access into the server.

Besides these security concerns, there are substantial concerns regarding

performance and flexibility with closed source firmware.

This chapter will provide an overview of the future of the firmware

industry, which is committed to overcoming such limitations by

migrating to open source firmware. Open source firmware can bring

trust to computing by ensuring more visibility into the source code that

is running at the Ring 0 privilege level while the system is booting. The

firmware discussed in this chapter is not a complete list of possible

firmware available on a computing systems, rather just a spotlight on

future firmware so you understand how different types of firmware could

shape the future. Future firmware will make device owners aware of what

is running on their hardware, provide more flexibility, and make users feel

more in control of the system than ever.

 Migrating to Open Source Firmware
Firmware is the most critical piece of software that runs on the platform

hardware after boot, and it has direct access to hardware registers and

system memory. Firmware is responsible for bringing the system into a

state where higher-level software can take control of the system and the

end user can make use of the peripheral devices. Prior to that, the user

doesn’t have any control of the system while the system is booting. A

misconfiguration in firmware might make the system unusable or create

security loopholes. Hence, it’s important to know what is running at the

Chapter 1 Spotlight on Future Firmware

4

lowest level of the platform hardware. Figure 1-2 shows the privilege level

of software programs running on a computing system. Typically, computer

users are more familiar with the system protection rings between Ring 0

and Ring 3, where Ring 0 is considered as the most privileged level where

the kernel is operating and Ring 3 is considered as the least privileged for

running applications or programs. Interestingly, underneath the kernel’s

Ring 0 layer, there is firmware space running, which provides a more

privileged mode of operations compared to the kernel. In this chapter,

these layers running beneath Ring 0 are referred to as Ring -1 to Ring -3.

Figure 1-2. System protection rings

Let’s take a look into these “minus” rings in more detail.

Chapter 1 Spotlight on Future Firmware

5

 Ring -1: System Firmware
System firmware is a piece of code that resides inside the system boot

device, i.e., SPI Flash in most of the embedded systems, and is fetched by

the host CPU upon release from reset. Depending on the underlying SoC

architecture, there might be higher-privileged firmware that initiates the

CPU reset (refer to the book System Firmware: An Essential Guide to Open

Source and Embedded Solutions for more details).

Operations performed by system firmware are typically known as

booting, a process that involves initializing the CPU and the chipsets part

of systems on chip (SoCs), enabling the physical memory (dynamic RAM,

or DRAM) interface, and preparing the block devices or network devices

to finally boot to an operating system. During this booting process, the

firmware drivers can have access to direct hardware registers, memory,

and I/O resources without any restrictions. Typically, services managed by

system firmware are of two types: boot services, used for firmware drivers’

internal communication and vanished upon system firmware being

booted to the OS; and runtime services, which provide access to system

firmware resources to communicate with the underlying hardware. System

firmware runtime services are still available after control has transferred to

the OS, although there are ways to track this kind of call coming from the

OS layer to the lower-level firmware layer at runtime.

System firmware belonging to the SPI Flash updatable region qualifies

for in-field firmware update, and also supports firmware rollback

protection to overcome vulnerabilities.

 Ring -2: System Management Mode
System Management Mode (SMM) is the highest privileged mode of

operations on x26-based platforms. There are two widely used ways to

allow the system to enter into SMM:

Chapter 1 Spotlight on Future Firmware

6

• Hardware-based method: This triggers a system

management interrupt (SMI), a dedicated port 0xb2

with the unique SMI vector number.

• Software-based method: This uses a general-purpose

interrupt through the Advanced Programmable

Interrupt Controller (APIC).

During initialization of the system firmware, a code block (program)

can get registered with an SMI vector, which will get executed while

entering into SMM. All other processors on the system are suspended, and

the processor states are saved. The program that is getting executed when

in SMM has access to the entire system, i.e., processor, memory, and all

peripherals. Upon exiting from SMM, the processor state is restored and

resumes its operations as if no interruption had occurred. Other higher-

level software doesn’t have visibility about this mode of operation.

SMM exploits are common attacks on computer systems, where

hackers use SMI to elevate the privilege level, access the SPI control

registers to disable the SPI write protection, and finally write BIOS rootkits

into the SPI Flash.

The major concern with SMM is that it’s completely undetectable, so

one doesn’t know what kind of operation is running in SMM.

 Ring -3: Manageability Firmware
Ring -3 firmware consists of the separate microcontrollers running its

firmware and later booted to a real- time operating system (RTOS). This

firmware always remains on and is capable of accessing all the hardware

resources; it’s meant to perform the manageability operations without

which one might need to access these devices physically. For example,

it allows the remote administration of the enterprise laptops and servers

by IT admins, such as powering on or off the device, reprovisioning the

hardware by installing the operating system, taking the serial log to analyze

Chapter 1 Spotlight on Future Firmware

7

the failure, emulating the special keys to trigger recovery, performing

active thermal management like controlling the system fans, and handling

the critical hardware device failure like a bad charger, failure of storage

device, etc.

Although this firmware has access to system resources (access to the

host CPU, unlimited access to the host system memory and peripherals)

of the host CPU (based on how it is being interfaced with the host CPU),

the operations performed by these processors are “invisible” to the host

processor. The code that is running on these processors is not publicly

available. Moreover, these codes are provided and maintained by the

silicon vendors; hence, they are assumed to be trusted without verifying

through any additional security layer like a verified boot or secure boot.

The fact to consider here is that all these software codes are developed

by humans and reviewed by other sets of humans. It’s possible to have

some bugs exist irrespective of which layer of ring it’s getting executed in,

and the concern is that the more privileged layer that gets executed, the

more opportunity there is for hackers to exploit the system.

As per the National Vulnerability Database (NVD), there are several

vulnerabilities being reported or detected by security researchers on

production systems every year. Among those security defects there are

many that exist within the “minus” rings. For example, CVE-2017-3197,

CLVA-2016-12-001, CLVA-2016-12-002, CVE-2017-3192, CVE-2015-3192,

CVE-2012-4251, etc., are vulnerabilities reported in firmware from

the NVD.

Most of the firmware being discussed was developed using closed

source, which means the documentation and code source to understand

what’s really running on a machine is not publicly available. When a

firmware update is available, you may be worried about clicking the accept

button because you don’t have any clue whether this update is supposed

to run on your machine. The user has a right to know what’s really running

on their device. The problem with the current firmware development

model is not the security; a study done on 17 open source and closed

Chapter 1 Spotlight on Future Firmware

8

source software showed that the number of vulnerabilities existing in a

piece of software is not affected by the source availability model that it

uses. The problem is lack of transparency.

Transparency is what is missing in closed source firmware if we park

the argument about the code quality due to internal versus external code

review. All these arguments will point back to the need to have visibility

into what is really running on the device that is being used. Having the

source code available to the public might help to get rid of the problem of

running several “minus” rings.

Running the most vulnerable code as part of the highest privileged

level makes the entire system vulnerable; by contrast, running that code

as part of a lesser privileged level helps to meet the platform initialization

requirement as well as mitigates the security concern. It might also help to

reduce the attack surface.

Additionally, performance and flexibility are other concerns that can

be improved with transparency. For example, typically closed source

firmware development focuses on short-term problems such as fixing the

bugs with code development without being bothered about redundancy

if any. A case study presented at the Open Source Firmware Conference

2019 claimed that a system is still functional and meets the booting

criteria even after 214 out of 424 firmware drivers and associated libraries

were removed, which is about a 50 percent reduction. Having more

maintainers of the code helps to create a better code sharing model that

overcomes such redundancy and results in instant boot. Finally, coming

to the security concerns, having a transparent system is more secure

than a supposed secure system that hides those potential bugs in closed

firmware.

This is a summary of the problems with the current firmware:

• Firmware is the most critical piece of code running on

the bare hardware with a privileged level that might

allure attackers.

Chapter 1 Spotlight on Future Firmware

9

• A compromised firmware is not only dangerous for the

present hardware but all systems that are attached to it,

even over a network.

• Lower-level firmware operations are not visible to

upper-level system software; hence, attacks remain

unnoticed even if the operating system and drivers are

freshly installed.

• Modern firmware and its development models are less

transparent, which leads to multiple “minus” rings.

• Having a transparency firmware development model

helps to restore trust in firmware as device owners

are aware of what is running on the hardware. In

addition, better design helps to reduce the “minus”

rings, represents less vulnerability, and provides better

maintenance with improved code size and higher

performance.

Open source firmware (OSF) is the solution to overcome all of

these problems. The OSF project performs a bare-minimum platform

initialization and provides flexibility to choose the correct OS loader based

on the targeted operating system. Hence, it brings efficiency, flexibility,

and improved performance. Allowing more eyes to review the code while

firmware is getting developed using an open source model provides

a better chance to identify the feature detects, find security flaws, and

improve the system security state by accommodating the community

feedback. For example, all cryptographic algorithms are available in

GitHub publicly. Finally, to accommodate the code quality question, a

study conducted by Coverity Inc. finds open source code to be of better

quality. All these rationales are adequate to conclude why migrating

to OSF is inevitable. Future firmware creators are definitely looking

into an opportunity to collaborate more using open source firmware

development models.

Chapter 1 Spotlight on Future Firmware

10

This chapter will emphasize the future firmware development models

of different firmware types such as system firmware, device firmware, and

manageability firmware using open source firmware.

 Open Source System Firmware
Development
Most modern system firmware is built with proprietary firmware where the

producer of the source code has restricted the code access; hence, it allows

private modification only, internal code reviews, and the generation of new

firmware images for updates. This process might not work with a future

firmware development strategy where proprietary firmware is unreliable,

or the functionality is limited in cases where device manufacturers relied

on a group of firmware engineers who know only what is running on

the device and therefore are capable of implementing only the required

features. Due to the heavy maintenance demands of closed source

firmware, often device manufacturers defer regular firmware updates

even for critical fixes. Typically, OEMs are committed to providing system

firmware updates two times during the entire life of the product, once

at the launch and another six months later in response to an operating

system update. System firmware development with an open source model

in the future would provide more flexibility to users to ensure that the

device always has the latest configuration. For that to happen, future

system firmware must adhere to the open source firmware development

principle. The open source firmware model is built upon the principle of

having universal access to source code with an open source or free license

that encourages the community to collaborate in the project development

process.

Chapter 1 Spotlight on Future Firmware

11

This book provides the system architecture of several open source

system firmware types including the bootloader and payload. Most open

source bootloaders have strict resistance about using any closed source

firmware binary such as binary large objects (BLOBs) along with open

source firmware. Typically, any undocumented blobs are dangerous for

system integration as they could be rootkits and might leave the system

in a compromised state. But, the industry recognizes that in order to

work on the latest processors and chipsets from the silicon vendors, the

crucial piece of the information is the silicon initialization sequence. In

the majority of cases, this is considered as restricted information prior

to product launch due to innovation and business reasons and may be

available under only certain legal agreements (like NDAs). Hence, to

unblock the open source product development using latest SoCs, silicon

vendors have come up with a proposal for a binary distribution. Under

this binary distribution model, the essential silicon initialization code is

available as a binary, which eventually unblocks platform initialization

using open source bootloaders and at the same time abstracts the

complexities of the SoC programming and exposes a limited set of

interfaces to allow the initialization of SoC components. This model is

referred to in this book as the hybrid work model.

This section will highlight the future system firmware journey using

following operational models:

• Hybrid system firmware model: The system firmware

running on the host CPU might have at least one closed

source binary as a blob integrated as part of the final

ROM. Examples: coreboot, SBL on x26 platforms.

• Open source system firmware model: The system

firmware code is free from running any closed source

code and has all the native firmware drivers for silicon

initialization. Example: coreboot on RISC-V platforms.

Chapter 1 Spotlight on Future Firmware

12

 Hybrid System Firmware Model
As defined earlier, the hybrid system firmware model relies on a silicon-

provided binary for processor and chipset initialization; hence, it needs

the following components as part of the underlying system firmware:

• Bootloader: A boot firmware is responsible for generic

platform initialization such as bus enumeration, device

discoveries, and creating tables for industry-standard

specifications like ACPI, SMBIOS, etc., and performing

calls into silicon-provided APIs to allow silicon

initialization.

• Silicon reference code binary: One or multiple binaries

are responsible for performing the silicon initialization

based on their execution order. On x86-platforms,

Firmware Support Package (FSP) is the specification

being used to let silicon initialization code perform

the chipset and processor initialization. It allows

dividing the monolithic blob into multiple sub-

blocks so that it can get loaded into system memory

as per the associated bootloader phase and provides

multiple APIs to let the bootloader configure the input

parameters. Typically, this mode of FSP operation

is known as API mode. Unlike other blobs, the FSP

has provided the documentation, which includes

the specification and expectation from each API

and platform integration guide. This documentation

clearly calls out the expectations from the underlying

bootloader, such as the bootloader stack requirement,

heap size, meaning for each input parameter to

configure FSP, etc.

Chapter 1 Spotlight on Future Firmware

13

Facts intel FSp Specification v2.1 introduces an optional FSp boot
mode named Dispatch mode to increase the FSp adaptation toward
pi spec bootloaders.

• Payload: An OS loader or payload firmware can be

integrated as part of the bootloader or can be chosen

separately, which provides the additional OS boot logic.

The book System Firmware: An Essential Guide to Open Source and

Embedded Solutions provides the detailed system architecture of the

bootloader and payload and defines the working principle with hybrid

firmware as FSP. This section will focus on defining the work relationship

between open source boot firmware with FSP.

• coreboot using FSP for booting the IA-Chrome platform

• EDKII Minimum Platform Firmware for Intel Platforms

 coreboot Using Firmware Support Package

Firmware Support Package (FSP) provides key programming information

for initializing the latest chipsets and processor and can be easily

integrated with any standard bootloader. In essence, coreboot consumes

FSP as a binary package that provides easy enabling of the latest chipsets,

reduces time-to-market (TTM), and is economical to build as well.

FSP Integration

The FSP binary follows the UEFI Platform Initialization Firmware Volume

Specification format. Hence, each firmware volume (FV) as part of FSP

contains a phase initialization code. Typically, FSP is defined as a single

firmware device (FD) binary, but because it contains several FVs and

each FV represents a different initialization phase and runs at different

Chapter 1 Spotlight on Future Firmware

14

noncontiguous addresses, a monolithic binary wouldn’t work here. Since

the FSP 2.0 specification, the FSP binary can be split into three blobs as

FSP-T, called FSP for Temporary RAM Initialization; FSP-M, called FSP for

Memory Initialization; and FSP-S, called for Silicon Initialization. Here are

some required steps for the FSP integration:

• Configuration: The FSP provides configuration

parameters that can be customized based on target

hardware and/or operating system requirements by the

bootloader. These are inputs for FSP to execute silicon

initialization.

• eXecute-in-place and relocation: The FSP is not position

independent code (PIC), and each FSP component

has to be rebased if it needs to support the relocation,

which is different from the preferred base address

specified during the FSP build. The bootloader has

support for both these modes where components need

to be executed at the address where it’s built, called

eXecute-In-Place (XIP) components and marked

as --xip, for example, FSP-M binary. Also, position-

independent modules are modules that can be located

anywhere in physical memory after relocation.

• Interfacing: The bootloader needs to add code to set up

the execution environment for the FSP, which includes

calling the FSP with correct sets of parameters as inputs

and parsing the FSP output to retrieve the necessary

information returned by the FSP and consumed by the

bootloader code.

Chapter 1 Spotlight on Future Firmware

15

FSP Interfacing

Since its origin, FSP has tried to provide a flexible interface between the

bootloader and FSP to have correct sets of parameters required to perform

the silicon initialization. Although FSP has gone through significant

specification changes since its first introduction, the basic input/output

architecture remains unchanged between all these different FSP versions.

For example, a data structure used to pass a configuration parameter from

the bootloader to FSP works as input parameters, and hand-off blocks

(HOBs), a standard mechanism to pass FSP information back to the

bootloader, work as output parameters. Figure 1-3 shows the evolution of

FSP interfaces along with its specification.

Figure 1-3. Explaining FSP interfacing with coreboot boot-firmware

coreboot supports FSP Specification version 2.x (the latest as of this

writing is 2.2).

Chapter 1 Spotlight on Future Firmware

16

FSP Configuration Data

Each FSP module contains a configuration data structure called

the updatable product data (UPD), which is used by FSP for silicon

initialization. Typically, UPD contains the default parameters for FSP

initialization. The bootloader contains a separate UPD data structure

for each FSP module, which allows the bootloader to override any of

the default UPD parameters. As part of the FSP integration process,

the bootloader is also required to keep FSP UPD data structures in the

bootloader source code along with the corresponding FSP binary. See

Figure 1-4.

Figure 1-4. UPD data structure as part of coreboot source code

It is recommended that the bootloader copy the whole UPD structure

from the FSP component to memory, update the parameters, and initialize

the UPD pointer to the address of the updated UPD structure. The FSP

API will then use this updated data structure instead of the default

Chapter 1 Spotlight on Future Firmware

17

configuration region as part of the FSP binary blob while initializing the

platform. In addition to the generic or architecture-specific data structure,

each UPD data structure contains platform-specific parameters.

Open Source Challenges with FSP Configuration Data

FSP configuration data structures are crucial for the hybrid system

firmware development model as it is used to configure the default built-

in UPD configuration data, which might not be applicable for the current

open source project to ensure the correct silicon initialization. Hence,

while integrating the FSP blobs with the bootloader, it is recommended to

ensure it has the same version of UPD structures as part of the bootloader

source code. FSP is responsible for the entire silicon-related initialization

process and feature enabling, and only inputs from the bootloader

are in the UPD data structure. Hence, while calling the FSP APIs like

TempRamInit(), FspMemoryInit(), and FspSiliconInit(), the bootloader

needs to pass a pointer that provides the updated data structure. Figure 1-5

shows the bootloader code structure that ensures the initialization of the

FSP configuration data for an open source firmware development project.

Chapter 1 Spotlight on Future Firmware

18

Figure 1-5. coreboot code structure to override UPD data structures

OSF development efforts expect the entire project source code is

available for review and configuration, but due to business reasons

like innovation and/or competition, the early open sourcing of the FSP

configuration data structure is not feasible for non-production-release

qualification (PRQ) products. It poses risk while developing an open

Chapter 1 Spotlight on Future Firmware

19

source project using the latest SoC prior to PRQ. Consequences of this

restriction would be incomplete SoC and mainboard source code per

platform initialization requirements and incomplete feature enabling.

To overcome this problem, a solution is being developed that is open

source friendly even for open project development using non-PRQ SoC,

called partial FSP configuration data structure (also known as partial

header). Here are the working principles of the partial FSP configuration

data structure generation process:

• This structure consists only of platform UPDs required

for a specific bootloader to override for the current

project.

• The rest of the UPDs are renamed as reserved. For any

project, reserved fields are not meant for bootloader

overrides.

• Embargoed UPD parameters’ names and descriptions

are being abstracted.

Partial headers are generated using a Python-based tool. This tool

will generate the partial headers for those bootloaders that do not need

the full list of UPD data structures. It takes two arguments for the header

generation process.

• First argument: This is the path for the complete FSP-

generated UPD data structure. The tool will run on

this header itself to filter out only the required UPD

parameters as per the second argument.

• Second argument: This is a file that provides the lists of

required UPD parameters for bootloader overrides.

This effort will ensure complete source code development on the

bootloader side along with enabling new features without being bothered

about the state of the silicon release. Post SoC PRQ, after the embargo is

Chapter 1 Spotlight on Future Firmware

20

revoked, the complete FSP UPD data structure gets uploaded into FSP on

GitHub, which replaces all reserved fields of the partial header with the

proper naming.

coreboot and FSP Communications Using APIs

Since the FSP 2.1 specification, FSP supports two possible boot flows

based on the implementation of the bootloader and its selection for the

operational mode of FSP. The majority of the open source bootloaders are

working with FSP and are using the API mode boot flow. Figure 1-6 shows

the coreboot boot flow using FSP in API mode.

Figure 1-6. coreboot boot flow using FSP in API mode

Here is the detailed boot flow description:

 1. coreboot owns the reset vector.

 2. coreboot contains the real mode reset vector

handler code.

 3. Optionally, coreboot can call the FSP-T API

(TempRamInit()) for temporary memory setup using

(CAR) and create a stack.

Chapter 1 Spotlight on Future Firmware

21

 4. coreboot fills in the UPD parameters required for

the FSP-M API, such as FspMemoryInit(), which

is responsible for memory and early chipset

initialization.

 5. On exit of the FSP-M API, either coreboot tears

down CAR using the TempRamExit() API, if the

bootloader initialized the temporary memory in

step 3 using the FSP-T API, or coreboot uses the

native implementation in coreboot.

 6. It fills up the UPD parameters required for

silicon programming as part of the FSP-S API,

FspSiliconInit. The bootloader finds FSP-S and

calls into the API. Afterward, FSP returns from the

FspSiliconInit() API.

 7. If supported by the FSP, the bootloader enables

multiphase silicon initialization by setting FSPS_

ARCH_UPD.EnableMultiPhaseSiliconInit to a

nonzero value.

 8. On exit of FSP-S, coreboot performs PCI

enumeration and resource allocation.

 9. The bootloader calls the FspMultiPhaseSiInit()

API with the EnumMultiPhaseGetNumberOfPhases

parameter to discover the number of silicon

initialization phases supported by the bootloader.

 10. The bootloader must call the

FspMultiPhaseSiInit() API with the

EnumMultiPhaseExecutePhase parameter n

times, where n is the number of phases returned

previously. The bootloader may perform board-

specific code in between each phase as needed.

Chapter 1 Spotlight on Future Firmware

22

 11. The number of phases, what is done during each

phase, and anything the bootloader may need to

do in between phases, will be described in the

integration guide.

 12. coreboot continues the remaining device

initialization. coreboot calls NotifyPhase() at

the proper stage like AfterPciEnumeration,

ReadyToBoot, and EndOfFirmware before handing

control over to the payload.

Facts if FSp returns the reset required status from any api, then
the bootloader performs the reset as specified by the FSp return
status return type.

FSP Drivers

The bootloader implements a corresponding version driver to support

the calling convention of the FSP entry point. Ideally, the purpose of these

drivers are as follows:

• Find the FSP header to locate the dedicated entry point,

and verify the UPD region prior to calling.

• Copy the default value from the UPD area into the

memory to allow the required override of UPD

parameters based on the target platform using driver-

provided callbacks into the SoC code, for example:

before calling into memory init or before silicon init.

• Fill out any FSP architecture-specific UPDs that are

generic like NvsBufferPtr for MRC cache verification.

Chapter 1 Spotlight on Future Firmware

23

• Finally, call the FSP-API entry point with an updated

UPD structure to silicon initialization.

• On failure, handle any errors returned by FSP-API and

take action; for example, manage the platform reset

request to either generic libraries or SoC-specific code.

• On success, retrieve the FSP outputs in the form of

hand-off blocks that provide platform initialization

information. For example, FSP would like to notify

the bootloader about a portion of system memory

that is being reserved by FSP for its internal use, and

coreboot will parse the resource descriptor HOBs

produced by the FSP-M to create a system memory

map. The bootloader FSP driver must have capabilities

to consume the information passed through the HOB

produced by the FSP.

Current coreboot code has drivers for the FSP 1.1 and FSP 2.0

specifications. The FSP 2.0 specification is not backward compatible but

updated to support the latest specification as FSP 2.2.

Mitigate Open Source Challenges with FSP Driver

Typically, system firmware development using an open source model has

expectations that all new silicon feature- related documentation should be

available to the public to allow the development of the new feature. But in

reality, with the latest processors and chipsets, the feature programming

lists are growing and expected to grow even more in future. With more

capable and complex SoC solutions in the future, there might be some

cases where certain feature programming might be classified as restricted;

hence, it is not feasible to implement using an open source bootloader.

For example, the current coreboot is capable enough to handle the

Chapter 1 Spotlight on Future Firmware

24

multiprocessor (MP) initialization on the x26-platform using the coreboot

native cpu and mp drivers. The Boot Strap Processor (BSP) performs the MP

initialization and typically involves two major operations.

• Bringing-up process: This enables application

processors (APs) from a reset. It loads the latest

microcode on all cores and syncs the latest Memory

Type Range Register (MTRR) snapshot between BSP

and APs.

• Perform CPU feature programming: Allow vendor-

specific feature programming to run such as to ensure

higher power and performance efficiency, enable

overclocking, and support specific technologies like

Trusted eXecution Technology (TXT), Software Guard

Extensions, Processor Trace, etc.

Typically, the bringing-up process for APs is part of the open

source documentation and generic in nature. But, the previously listed

CPU feature programming lists are expected to grow in the future and

be considered proprietary implementations. If the system firmware

implementation with the open source bootloader isn’t able to perform

these recommended CPU features, programming might resist the latest

hardware features. To overcome this limitation, the hybrid system

firmware model needs to have an alternative proposal as part of the

FSP driver.

Currently, coreboot is doing CPU multiprocessor initialization for the

IA platform before calling FSP-S using its native driver implementation and

having all possible information about the processor in terms of maximum

number of cores, APIC IDs, stack size, etc. The solution offered here is a

possible extension of coreboot support by implementing additional sets of

APIs, which are used by FSP to perform CPU feature programming.

Chapter 1 Spotlight on Future Firmware

25

FSP uses the Pre-EFI Initialization (PEI) environment defined in the

PI Specification and therefore relies on install/locate PPI (PEIM to PEIM

Interface) to perform certain API calls. The purpose of creating a PPI

service inside the bootloader is to allow accessing its resources while FSP

is in operation. This feature is added into the FSP specification 2.1 onward

where FSP is allowed to make use of external PPIs, published by boot

firmware and able to execute by FSP, being the context master.

In this case, coreboot publishes a multiprocessor (MP) service PPI,

EFI_MP_SERVICES_PPI, as per PI Specification Volume 1, section 2.3.9.

coreboot implements APIs for the EFI_MP_SERVICES_PPI structure with its

native functions as follows:

APIs as per the
Specification

coreboot Implementation
of APIs

APIs Description

PeiGetNumberOf

Processor

get_cpu_count() to get

processor count

get the number of

Cpus.

PeiGetProcessorInfo Fill

ProcessorInfoBuffer:

- processor iD: apicid

- location: get_cpu_

topology_from_

apicid()

get information on a

specific Cpu.

PeiStartupAllAps Calling the mp_run_on_

all_aps() function

activate all the

application processors.

PeiStartupThisAps mp_run_on_aps()

based on the argument

logical_cpu_number

activate a specific

application processor.

(continued)

Chapter 1 Spotlight on Future Firmware

26

APIs as per the
Specification

coreboot Implementation
of APIs

APIs Description

PeiSwitchBSP Currently not being

implemented in coreboot

due to scoping limitations

Switch the bootstrap

processor.

PeiEnableDisableAP enable or disable an

application processor.

PeiWhoAmI Calling to activate the

cpu_index() function

identify the currently

executing processor.

PeiStartupAllCpus

only available in EDKII_

PEI_MP_SERVICES2_PPI

mp_run_on_aps()

based on MP_RUN_ON_

ALL_CPUS

run the function on

all Cpu cores (BSp +

aps).

Here is code flow between coreboot and FSP while running the

restricted CPU feature programming:

 1. coreboot selects either CONFIG_MP_SERVICES_

PPI_V1 or CONFIG_MP_SERVICES_PPI_V2 from the

SoC directory as per the FSP recommendation

to implement the MP Services PPI for FSP usage.

coreboot does the multiprocessor initialization

as part of ramstage early, before calling the FSP-S

API. All possible APs are out of reset and ready to

execute the restricted CPU feature programming.

 2. coreboot creates the MP (MultiProcessor) Services

APIs as per PI Specification Vol 1, section 2.3.9, and

is assigned into the EFI_MP_SERVICES or EDKII_

PEI_MP_SERVICES2_PPI structure as per the MP

specification revision.

Chapter 1 Spotlight on Future Firmware

27

 3. FSP-S to install EFI_MP_SERVICES or EDKII_PEI_MP_

SERVICES2_PPI based on the structure provided by

coreboot as part of the CpuMpPpi UPD. At the later

stage of FSP-S execution, locate the MP Services PPI

and run the CPU feature programming on APs.

 4. While FSP-S is executing multiprocessor

initialization using Open Source EDKII UefiPkg, it

invokes a coreboot-provided MP Services API and

runs the “restricted” feature programming on APs.

Figure 1-7 shows the pictorial representation of the boot flow.

Figure 1-7. coreboot-FSP multiprocessor init flow

Chapter 1 Spotlight on Future Firmware

28

This design would allow running SoC vendor-recommended restricted

CPU feature programming using the FSP module without any limitation

while working on the latest SoC platform (even on non-PRQ SoC) in the

hybrid system firmware model. The CPU feature programming inside FSP

will be more transparent than before as it’s using coreboot interfaces to

execute those programming features. coreboot will have more control over

running those programming features as the API optimization is handled by

coreboot.

This solution is future-proof, because in the future this design of the

PEIM-PEIM interface (PPI) can be expanded beyond just running the

restricted CPU feature programming in a coreboot context. Here is a

list of other opportunities to scale this solution for future hybrid system

firmware:

• Today on the CrOS platform, the cbmem -c command is

capable only of redirecting the coreboot serial log into

the cbmem buffer using the bootloader driver. With this

approach, the coreboot serial library may be used by

FSP to populate serial debug logs.

• The same can be used for post code-based debug

methods as well.

• Rather than implementing a dedicated timer library

inside FSP, this method can be used by FSP to inject

any programmable delay using the bootloader-

implemented PPI, which natively uses the bootloader

timer driver.

To summarize, a hybrid system firmware model in the future provides

the ease of porting to a new silicon. It allows for bootloaders (coreboot,

SBL, UEFI MinPlatform, etc.) to have an FSP interfacing infrastructure for

finding and loading FSP binaries, configuring FSP UPDs as per platform

need, and finally calling FSP APIs.

Chapter 1 Spotlight on Future Firmware

29

 EDKII Minimum Platform Firmware

Since the introduction of the Unified Extensible Firmware Interface (UEFI)

firmware in 2004, all Intel architecture platforms have migrated from

legacy BIOS to UEFI firmware implementations. With a blistering speed,

UEFI firmware has taken over the entire PC ecosystem to become the

de-facto standard for system firmware. Historically, platforms that use

UEFI firmware have been nourished and maintained by a closed group;

hence, the source used in a platform that uses UEFI firmware remains

closed source although the specifications are open standards. Details

about the UEFI architecture and specification are part of System Firmware:

An Essential Guide to Open Source and Embedded Solutions.

Over the years the platform enabling activity has evolved and demands

more openness due to firmware security requirements, cloud workloads,

business decisions for implementing solutions using more open

standards, etc.

Minimum Platform Architecture

The Minimum Platform Architecture (MPA) provides the design guidelines

for implementing platform initialization using the open source EDKII

standard to meet the industry expectations from the UEFI firmware.

Figure 1-8 shows the high-level firmware stack used in the MPA.

Chapter 1 Spotlight on Future Firmware

30

Figure 1-8. MPA diagram

The MPA firmware stack demonstrates the hybrid-firmware

development work model where it combines the several closed and open

source components for platform initialization.

Core
Tianocore is an open source representation of the UEFI. EDKII is

the modern implementation of UEFI and Platform Initialization (PI)

specifications. Typically, the EDKII source code consists of standard

drivers based on the various industry specifications such as PCI, USB,

TCG, etc.

Chapter 1 Spotlight on Future Firmware

31

Silicon
A closed source binary model was developed and released by silicon

vendors (example: Intel, AMD, Qualcomm etc.) with an intention to

abstract the silicon initialization from the bootloader.

Prior to the MPA architecture, the FSP API boot mode was the de facto

standard for silicon initialization when the bootloader needs to implement

a 32-bit entry point for calling into the APIs as per the specification. This

limits the adaptation of SoC vendor-released silicon binaries aka FSP

toward a bootloader that adheres to the UEFI PI firmware specification.

Traditionally, the UEFI specification deals with firmware modules

responsible for platform initialization and dispatched by the dispatcher

(Pre-EFI Initialization aka PEI and Driver eXecution Environment aka DXE

core). To solve this adaptation problem in the UEFI firmware platform

enabling model, a new FSP boot mode has been designed with the FSP

External Architecture Specification v2.1 known as dispatch mode.

Dispatch Mode

FSP API boot mode requires bootloaders to perform a call into the FSP

entry points like FSP-M (for Memory Init) and FSP-S (for Silicon Init) for

initiating the silicon initialization. The dispatch mode is more aligned with

the UEFI specification where FSP-M and FSP-S are containers that expose

firmware volumes (FVs) that can be directly used by a UEFI PI–compliant

bootloader. For example, the UEFI bootloader known as an FSP wrapper

uses FSP the same way as any other firmware file system partition. The

PEIM in these FVs are executed as is in the PEI environment with the

bootloader being the context master. All the FSP entry points introduced

Chapter 1 Spotlight on Future Firmware

32

as part of API boot mode (i.e., FspMemoryInit(), FspSiliconInit(), and

NotifyPhase()) are not in use. Figure 1-9 shows the work relationship

between a UEFI PI bootloader and FSP in dispatch mode.

• The UEFI PI bootloader adhering to the MPA

is equipped with a PCD database to pass the

configuration information between bootloaders to

FSP. This includes hardware interface configuration

(typically, configured using UPD in API mode) and

boot stage selection. Refer to the “Min-Tree” section

to understand the working principle and MPA stage

approach for incremental platform development.

• PEI Core as part of Silicon Reference code blob aka

FSP is used to execute the modules residing into the

firmware volumes (FVs) directly.

• The PEIMs belonging to these FVs are communicating

with each other using PPI as per the PI specification.

• The hand-off-blocks are being used to pass the

information gathered in the silicon initialization phase

with the UEFI PI bootloader.

• The UEFI bootloader doesn’t use NotifyPhase APIs;

instead, FSP-S contains a DXE driver that implements

an equivalent implementation using a DXE native

driver that is getting invoked at NotifyPhase() events.

Chapter 1 Spotlight on Future Firmware

33

Figure 1-9. FSP work model in dispatch mode with UEFI bootloader

UEFI Bootloader and FSP Communications Using Dispatch Mode
The communication interface designed between the UEFI bootloader

and FSP in dispatch mode is intended to remain as close as possible to

the standard UEFI boot flow. Unlike API mode, where the communication

between the bootloader and FSP takes place by passing configuration

parameters known as UPD to the FSP entry points, in dispatch mode

the Firmware File Systems (FFSs) that belong to FVs consist of Pre-EFI

Initialization Modules (PEIMs) and get executed directly in the context

of the PEI environment provided by the bootloader. This can also be

referred to as the firmware volume drop-in model. In dispatch mode,

the PPI database and HOB lists prepared by FSP are shared between the

bootloader and FSP.

Here is the detailed boot flow description:

 1. The bootloader owns the reset vector and SecMain

as part of the bootloader getting executed upon the

platform start executing from the reset vector.

Chapter 1 Spotlight on Future Firmware

34

 2. SecMain is responsible for setting up the initial

code environment for the bootloader to continue

execution. Unlike the coreboot workflow with

FSP in API mode, where coreboot does the

temporary memory initialization using its native

implementation on the x86 platform instead calling

the FSP-T API, dispatch mode tries to maximize

the usage of FSP and uses FSP-T for initializing

temporary memory and setting up the stack.

 3. The bootloader provides the boot firmware volume

(BFV) to the FSP. The PEI core belonging to FSP uses

the BFV to dispatch the PEIMs and initialize the

PCD database.

 4. In addition to the bootloader PEI modules, FSP

dispatches the PEI module part of FSP-M to

complete the main memory initialization.

 5. The PEI core continues to execute the post-memory

PEIMs provided by the bootloader. During the

course of dispatch, the PEIM included within

FSP-S FV is executed to complete the silicon-

recommended chipset programming.

 6. At the end of the PEI phase, all silicon-

recommended chipset programming is done using

the closed source FSP, and DXE begins its execution.

 7. The DXE drivers belonging to the FSP-S firmware

volume are dispatched. These drivers will register

events to be notified at different points in the boot flow.

For example, NotifyPhase will perform the callbacks to

complete the remaining silicon-recommended security

configurations such as disabling certain hardware

Chapter 1 Spotlight on Future Firmware

35

interfaces, locking the chipset register, and dropping

the platform privilege level prior to handing control off

to the payload or operating system.

 8. The payload phase executes the OS bootloader and

loads the OS kernel into the memory.

 9. The OS loader signals the events to execute the

callbacks, registered as part of the DXE drivers to ensure

the pre- boot environment has secured the platform.

Platform

In the past, UEFI firmware development has used closed source for platform

initialization, but with MPA, this limitation is diminished by creating a

platform standard known as the EDKII Minimum Platform Specification.

This approach allows the platform using UEFI firmware to open source

and improves customer engagement, brings transparency to product

development, establishes the trust in the community, and finally establishes

the ecosystem that encourages the community to contribute toward platform

implementation. The key innovation in this architecture is the layered

approach called stages, which are based on the development phase and the

functionality for specific use cases. Each stage builds upon its previous stage

with extensibility to meet silicon, platform, or board requirements. The MPA

tries to split the platform implementation into two parts.

• Generic: This part remains generic in nature by

providing the required APIs to define the control flow.

This generic control flow is being implemented inside

MinPlatformPkg (Edk2-Platforms/Platform/Intel/

MinPlatformPkg), such that the tasks performed by the

MinPlatformPkg can be reused by all other platforms

(belonging to the board package) without any

additional source modification.

Chapter 1 Spotlight on Future Firmware

36

• Board package: This part focuses on the actual

hardware initialization source code aka board package.

Typically, the contents of this package are limited to the

scope of the platform requirements and the feature sets

that board users would like to implement. As described

in Figure 1-8, the board package code is also open

source and represented as Edk2-Platforms/Platform/

Intel/<xyz>OpenBoardPkg, where xyz represents

the actual board package name. For example,

TiogaPass, a board supported by Open Compute

Project (OCP) based on Intel’s Purley chipset, uses the

PurleyOpenBoardPkg board package.

Facts a closed source representation of the OpenBoardPkg is
just BoardPkg, which still directly uses the MinPlatformPkg from
eDKii platforms.

The board package consists of a standard EDKII package along with

the following items and must implement the guidelines:

 – A board package may consist of one or more supported

boards. These boards are sharing the common

resources from the board package.

 – Board-specific source code must belong to the board

directory and name after the supported board. For the

previous example, the board directory for TiogaPass is

named as BoardTiogaPass.

 – All the board-relevant information is made available to

the MinPlatformPkg using board-defined APIs.

Chapter 1 Spotlight on Future Firmware

37

To summarize MPA, it consists of a closed source FSP package for

silicon initialization, and the rest of the source code is potentially open

source where MinPlatformPkg and a board package are combined together

to call the platform.

Min-Tree

MPA is built around the principle of a structural development model. This

structural development model can be referred to as a min-tree, where the

source code tree is started with a minimalistic approach and enriched

based on the required functionality getting included over time as the

platform is getting matured. To make this model structural, the design

principle relied on dividing the flow, interfaces, communication, etc., into

a stage-based architecture (refer to “Minimum Platform Stage Approach”

section).

Figure 1-10 shows the min-tree development model over the product

life cycle. Typically, in the product development cycle, the early phase is

always focusing on creating the bare-minimum source code. The target

is to make sure the early silicon-based simulation or emulation platform

is able to perform the basic boot to an operating system. To meet this

goal, the platform development starts by leveraging the source code of

the previous generation platform (typically referred to as n-1 where n

is the current generation platform) and existing feature sets. This often

includes creating the new sets of silicon and platform code on top of the

prior platform after analyzing the basic differences between the new

target platform from its prior generation. Hence, at the start of the product

development cycle, the min-tree just consists of silicon and platform-

related changes that are applicable for the present platform and leverages

existing features from the prior generation platform.

Chapter 1 Spotlight on Future Firmware

38

Figure 1-10. Min-tree evolution over product timeline

The later product development stages are targeted more toward

meeting the product milestone releases; hence, it focuses on the code

completion that includes development of the full feature sets applicable

for this platform. Next is platform development, which focuses on the

enablement of the product differentiator features, which is important

for product scaling. Finally, the platform needs to be committed to

sustenance, maintenance, and derivative activities. The staged platform

approach is a more granular representation form of the min-tree where

based on product requirement, timeline, security, feature sets, etc.,

one can decide the level of the tree to design the minimum platform

architecture. For example, product-distinguishing features are not part

of the essential or minimum platform or advanced feature list, and the

board package is free to exclude such features using boot stage PCD

(gMinPlatformPkgTokenSpaceGuid.PcdBootStage). This may be used

to meet a particular use case based on the platform requirement. For

example, a board may disable all advanced features by setting the board

Chapter 1 Spotlight on Future Firmware

39

stage PCD value to 4 instead of 6 to improve the boot time. Decrementing

the additional stages might also be used for SPINOR size reduction as the

final bootloader executable binary size is expected to get reduced.

Minimum Platform Stage Approach

The MPA staged approach describes the minimal code block and binary

components required while creating system firmware. The flexible

architecture allows modifying the FD image to make it applicable for

the target platform. In this architecture, each stage will have its own

requirement and functionality based on the specific uses. For example,

Stage III, Boot to UI, is focused on interfacing with console I/Os and

other various hardware controllers using the command-line interface.

Additionally, decrementing a stage might also translate to reducing the

platform feature set. For example, a Stage III bootloader won’t need to

publish ACPI tables as this feature is not useful for the platform.

Figure 1-11 describes the stage architecture, including the expectations

from the stage itself. Each stage is built upon the prior stage with

extensibility to meet the silicon, platform, or board requirements.

Stage I: Minimal Debug

Stage I (Minimal Debug) is the base foundation block for the later stages

supported by this architecture to add more complexity by introducing

advanced functionality.

Chapter 1 Spotlight on Future Firmware

40

Figure 1-11. Minimum platform stage architecture

Chapter 1 Spotlight on Future Firmware

41

Stage I is contained within the SEC and PEI phases; hence, it should

get packed and uncompressed inside the firmware volume. The minimal

expectation from this stage is to implement board-specific routines that

enable the platform debug capability like serial output and/or postcode to

see the sign of life.

The major responsibilities of Stage I are as follows:

• This is similar to all other bootloaders that come up on

a memory-restricted environment like x86. Perform

initialization of temporary memory and set up the code

environment.

• Perform pre-memory board specific initialization

(if any).

• Detect the platform by reading the board ID after

performing the board-specific implementation.

• Perform early GPIO configuration for the serial port

and other hardware controllers that are supposed to be

used early in the boot flow.

• Enable the early debug interface, typically, serial

port initialization over legacy I/O or modern PCH-

based UARTs.

The functional exit criteria of Stage I is when temporary memory is

available and the debug interface is initialized where the platform has

written a message to indicate that Stage I is now getting terminated.

Stage II: Memory Functional

Stage II (Memory Functional) is primarily responsible for ensuring the

code path that executes the memory initialization code for enabling the

platform permanent memory. This stage extends the operations on top

Chapter 1 Spotlight on Future Firmware

42

of Stage I and performs the additional/mandatory silicon initializations

required prior to memory initialization. Because of the memory-restricted

nature of platform boot, this stage is also packed uncompressed. Stage II

is more relying on the FSP-M firmware volume in terms of finding the PEI

core and dispatching the PEIMs.

The following of the major responsibilities of Stage II:

• Perform pre-memory recommended silicon policy

initialization.

• Execute memory initialization module and ensure the

basic memory test.

• Switch the program stack from temporary memory to

permanent memory.

The functional exit criteria of Stage II are that early hardware

devices like GPIOs are being programmed, main memory is initiated,

temporary memory is disabled, memory type range registers (MTRRs)

are programmed with main memory ranges, and the resource description

HOB is built to pass that initialization information to the bootloader.

Stage III: Boot to UI

The primary objective of Stage III (Boot to UI) is to be able to successfully

boot to the UEFI Shell with a basic UI enabled. The success criteria of this

stage is not to demonstrate that every minimum platform architecture

should be equipped with the UEFI Shell, but rather more focuses on the

generic DXE driver execution on top of the underlying stages like Stages

I and II (mainly targeted for silicon and board). The bare-minimal UI

capability required for Stage III is a serial console.

Stage III is contained with the Driver Execution Environment (DXE)

and Boot Device Selection (BDS) for booting to the UEFI Shell. The major

responsibilities of Stage III are as follows:

Chapter 1 Spotlight on Future Firmware

43

• Bring generic UEFI-specific interfaces like DXE Initial

Program Load (IPL), DXE Core, and dispatch DXE

modules. This includes installing the DXE architectural

protocols.

• Perform post-memory silicon-recommended

initialization.

• Have a provision to access the nonvolatile media

such as SPINOR using UEFI variables. Additionally,

capabilities that can be enabled as part (but not only

limited to this lists) of this phase allow various input

and output device driver access such as USB, graphics,

storage, etc.

The functional exit criteria of Stage III is to ensure all generic device

drivers are not operational and the platform has reached the BDS phase,

meaning the bootloader is able to implement minimal boot expectations

for the platform.

Stage IV: Boot to OS

Leveraging on the previous stage, Stage IV (Boot to OS) is to enable a

minimal boot path to successfully boot to an operating system (OS). The

minimal boot path is the delta requirement over Stage III that ensures

booting to an OS.

The minimal boot path for Stage IV includes the following:

• Add minimum ACPI tables required for booting an

ACPI-compliant operating system. Examples are ACPI

tables, namely, RSDT (XSDT), FACP, FACS, MADT,

DSDT, HPET, etc.

• Based on the operating system expectation, it might

additionally publish DeviceTree to allow the operating

system to be loaded.

Chapter 1 Spotlight on Future Firmware

44

• Trigger the boot event that further executes the

callbacks being registered by the FSP-S PEIMs to ensure

locking down the chipset configuration register and

dropping the platform privilege prior to launching the

application outside trusted boundaries.

• This phase will also utilize the runtime services

being implemented by the UEFI bootloader for

communication like Timer and nonvolatile region

access from the OS layer.

After the platform is able to successfully boot to a UEFI-compliant

OS with a minimal ACPI table being published, it is enough to qualify

Stage IV to call its termination. Additionally, this stage implements SMM

support for x86–based platforms where runtime communication can get

established based on software triggering SMI.

Stage V: Security Enable

The basic objective of Stage V (Security Enable) is to include security

modules/foundations incrementally over Stage IV. Adhering to the basic/

essential security features is the minimal requirement for the modern

computing systems. Chapter 5 is intended to highlight the scenarios to

understand the security threat models and what it means for the platform

to ensure security all around even in the firmware.

The major responsibilities of Stage V are as follows:

• Ensure that the lower-level chipset-specific security

recommendation such as lockdown configuration is

implemented.

• Hardware-based root of trust is being initialized and

used to ensure that each boot phase is authenticated

and verified prior to loading into the memory and

executing it as a chain throughout the boot process.

Chapter 1 Spotlight on Future Firmware

45

• Protect the platform from various memory-related

attacks if they implement the security advisory well.

• At the end of this phase, it will allow running any

trusted and authenticated application including the

operating system.

Stage VI: Advanced Feature Selection

Advanced features are the nonessential block in this min-tree structural

development approach. All the essential and mandatory features required

for a platform to reach an operating system are developed using stages I

to V. The advanced feature selection is focused on developing firmware

modules based on a few key principles such as modularization, reducing

interdependencies over other features, etc. It helps these modules to get

integrated with min-tree as per the user requirements, product use cases,

and even the later product development cycle.

The design principles behind Stage VI are as follows:

• Platform development models become incremental

where more essential features are integrated and

developed at an early phase. Otherwise, the complex

but generic advanced features can be developed

without being bottlenecked on the current silicon and

board but can be readily shared across platforms.

• Advanced feature modules necessarily do not contain

functionality that is unrelated to the targeted feature.

• Each feature module should be self-content in nature,

meaning it minimizes the dependencies to the other

feature.

Chapter 1 Spotlight on Future Firmware

46

• The feature should expose a well-defined software

interface that allows easy integration and configuration.

For example, all modules should adhere to EDKII

configuration options such as PCD to configure the

feature.

Stage VII: Optimization

In the scope of current architecture, Stage VII (Optimization) is a proposed

architectural stage reserved for future improvements. The objective of this

stage is to provide an option for the platform to ensure optimization that

focuses on the target platform. For example, on a scaling design without

Thunderbolt ports, there should be a provision using PCD that disables

dispatching of Thunderbolt drivers (including host, bus, and device). This

is known as a configurable setting.

Additionally, there could be compilation-time configuration attached

to the PCD that strips unused components from the defined FV. For

example, FSP modules are used for API boot mode. It is intended that such

optimization/tuning can be intercepted in the product even at a later stage

without impacting the product milestone aka schedules.

These are just examples that demonstrate the architecture freedom

to improve the platform boot time and SPINOR size reduction at the

later stage.

To summarize, a hybrid system firmware development using EDKII

MPA is intended to improve the relationship between open source and

closed source components. An MPA design brings transparency to

platform development even with EDKII platform code. The min-tree

design serves as a basic enablement vehicle for the hardware power- on

and allows cross-functional teams to get started on feature enablement.

The feature enablement benefits from its modular design that is simple to

maintain.

Chapter 1 Spotlight on Future Firmware

47

 Open Source System Firmware Model
The ideal philosophy of open source system firmware is to make sure

that all pieces of the firmware are open source, specifically, the ones

required for the boot process post CPU reset. This effort of achieving the

system firmware code is 100 percent open source and has significant

dependency over the underlying platform hardware design. Typically,

due to the unavailability of the detailed hardware interface document

and programming sequence for boot-critical IPs like memory controller,

system firmware projects should choose the hybrid system firmware model

over complete open source system firmware. RISC-V is a good example

of an open standard hardware specification that allows pure open source

system firmware development on RISC-V-based embedded systems,

personal computers, etc. The word pure being used here intentionally

to differentiate a firmware project that supports closed source blobs for

platform pre-reset flow from the transparent system reset flow (pre and

post CPU reset) with all possible open source firmware.

There are several open source system firmware projects available, and

this section is about having a detailed overview about expectations from

the future open source system firmware. Hence, future system firmware

will focus not only on getting rid of proprietary firmware blobs but also

on adopting a modern programming language for developing system

firmware. oreboot is an aspiring open source system firmware project that

is slowly gaining momentum by migrating its supports from evaluation

boards to real hardware platforms. oreboot has a vision of pure open

systems, meaning firmware without binary blobs. But to add the latest

x26-based platforms, it had made an exception to include only boot-

critical blobs (for example, manageability firmware, AMD AGESA, FSP for

performing specific silicon initialization), where feature implemented by

blobs during boot is not possible to implement in oreboot.

This section will provide an architecture overview of oreboot and its

internals, which will be valuable for developers to learn for preparing

Chapter 1 Spotlight on Future Firmware

48

themselves for system firmware architecture migration into a more

efficient and safe programming language. It’s like a recurrence of events

that happened a few decades back that had migrated the present system

firmware programming language to C from assembly.

 oreboot = Coreboot - C + Much More

At a high level, it’s easy to define oreboot as downstream of the coreboot

project, which is developed without the C programming language. The

oreboot system firmware project has zero C code, very minimal code

written in assembly to just set up the programming environment, and

remaining code in the Rust language. With the introduction of the Rust

code for system firmware development, it offers better security and

reliability. The oreboot image is licensed under the GPL, version 2. Here

are the design principles of oreboot, which make it different from the other

boot firmware used on embedded systems:

• oreboot is focused on reducing the firmware boundary

to ensure instant system boot. The goal for oreboot is to

have fewer than one boot on embedded devices.

• It improves the system firmware security, which

typically remains unnoticed by the platform security

standards with a modern, safe programming language.

Refer to Appendix A for details about the usefulness

of Rust in system firmware programming, which deals

with direct memory access and even operations that

run on multithreaded environments.

• It removes dedicated ramstage usage from the boot

flow and defines a stage named Payloader Stage. This

will help to remove the redundant firmware drivers and

utilities from LinuxBoot as payload.

Chapter 1 Spotlight on Future Firmware

49

• It jumps to the kernel as quickly as possible during

boot. Firmware shouldn’t contain the high-level device

drivers such as network stack, disk drivers, etc., and it

can leverage the most from LinuxBoot.

Currently, oreboot has support for all the latest CPU architecture, and

adding support for the newer SoC and mainboards are a work in progress.

Currently the RISC-V porting being done using oreboot is fully open

sourced. In addition, it’s able to boot an ASpeed AST2500 ARM-based

server management processor as well as a RISC-V OpenTitan “earlgrey”

embedded hardware.

 oreboot Code Structure

The source code organization of an oreboot project is similar to coreboot

with a more simplified build infrastructure. The makefile parts of oreboot

directories are much simpler; unlike coreboot, they don’t contain the

control flow. The .toml-based configuration file is used to define and

configure sets of tasks to run as part of control flow. A task is Rust code that

needs to be executed. Tasks can have dependencies that are also tasks that

will be executed before the current task itself. The following table describes

the oreboot code structure:

Directory Description

src/arch lists of supported Cpu architecture, for example: armv7, armv2,

risc-v, x26, etc.

src/drivers Supported firmware drivers, written in rust, that follow oreboot

unique driver model, for example: clock, uart, spi, timer, etc.

src/lib generic libraries like devicetree, util, etc.
(continued)

Chapter 1 Spotlight on Future Firmware

50

(continued)

Directory Description

src/mainboard lists of supported mainboards as part of the oreboot project.

this list contains emulation environments like qemu, engineering

board such as upsquared based on x26, and hiFive the riSC-V

based development board, BmC platform ast2500, etc.

each mainboard directory contains a makefile and Cargo.toml

file to define the build dependencies, which will allow it to build

all boards in parallel.

example of Cargo.toml:

[dependencies]

cpu = { path = "../../../cpu/armltd/cortex-a9"}

arch = { path = "../../../arch/arm/armv7"}

payloads = { path = "../../../../payloads"}

device_tree = { path = "../../../lib/device_

tree" }

soc = { path = "../../../soc/aspeed/ast2500" }

[dependencies.uart]

path = "../../../drivers/uart"

features = ["ns16550"]

include source files written in rust (.rs) and assembly (.S) as

per the boot phase requirements.

two special files reside in the mainboard directory as fixed-

dtfs.dts to create the flash layout and describe system

hardware configuration as mainboard.dts. mainboard.dtb

is the binary encoding of the device tree structure.

Chapter 1 Spotlight on Future Firmware

51

Directory Description

src/soc Source code for SoC that includes clock programming, early
processor initialization, setting up code environment, Dram
initialization sequence, chipset registers programming, etc.

each SoC directory also contains Cargo.toml that defines
the dependent drivers and library required for SoC-related
operations.

payloads/ library for payload-related operations like loading into memory

and executing.

tools/ tools directory that contains useful utilities like layoutflash

to create an image from binary blobs, as described in the layout

specified using device tree, bin2vmem to convert binary to

Verilog Vmem format, etc.

README.md Describes the prerequisites to getting started with oreboot,

cloning source code, compilation, etc., useful for the first-time

developer.

Makefile.inc this makefile is included by the project mainboard directory

makefile.

 oreboot Internals

This section will guide developers through the various key concepts

of oreboot that are required to understand its architecture. Without

understanding these architectural details, it would be difficult to

contribute to a project. Also, these are the key differentiating features for

oreboot, compared to the coreboot project.

Chapter 1 Spotlight on Future Firmware

52

Flash Layout

Flash layout specifies how different binaries as part of oreboot are getting

stitched together to create the final firmware image (ROM) for flashing

into the SPI Flash. This file is named fixed-dtfs.dts, belonging to each

mainboard directory.

oreboot has replaced the coreboot file system (CBFS) with the Device

Tree File System (DTFS). It is easy to expose the layout of the flash chip

without any extra OS interface. DTFS provides an easy method to describe

the different binary blobs.

Here is sample code to describe the different regions belonging to the

flash layout (see Figure 1-12):

area@x {

 description = "Boot Blob";

 offset = <0xff0000>;

 size = <0x20000>; // 512KiB

 file = "$(TARGET_DIR)/bootblob.bin";

};

Chapter 1 Spotlight on Future Firmware

53

Figure 1-12. 32MiB flash layout

The description field defines the type of binary, offset is the base

address of the region, the size field specifies the region limit, and the file

field is used to mention the path of the binary. x is the region number

inside the flash layout, for example: boot blob, rampayload, NVRAM,

etc. With reduced boot phases, the oreboot architecture allows ample

headroom in flash.

Chapter 1 Spotlight on Future Firmware

54

Build Infrastructure

coreboot uses make menuconfig to allow configuration, but oreboot

doesn’t have such a provision; hence, it relies on conditional compilation.

An oreboot build starts when the developer executes the make command

from a specific mainboard directory. The code inside src/mainboard/*/*/

src/main.rs starts with assembly instruction first, which performs

the minimal amount of initialization that is required to call into the

Rust program. Compared to other C-based firmware modules, which

have predefined entry points such as main(), here main.rs has the pub

extern "C" fn 'entry_func_name' method that is being called from the

assembly to start the program. The code written in Rust does the platform

initialization and prepares the system to load and run the payload.

The mainboard code uses only the core library, which means no heap

allocated structures and that arrays should be with statically allocated size.

See Figure 1-13.

Chapter 1 Spotlight on Future Firmware

55

Figure 1-13. oreboot build flow

The binary generation process is a two-step approach.

• Create an executable and linking format (ELF) binary

from source code using the cargo build command.

• Convert the .elf file to binary format (.bin) with the

rust objcopy command.

The output binary (.bin) belongs to a region specified using the file

field as part of the flash layout file. Now these binaries need to construct an

image that will be flashed into the device. The tool name layoutflash is

Chapter 1 Spotlight on Future Firmware

56

(source code belongs to the tools directory as mentioned earlier) used to

construct the final binary (.ROM). It takes arguments as an oreboot device

tree to specify the image layout and compiled binary files generated by the

compilation process.

Device Tree

The DTS specification specifies a construct called a device tree, which is

typically used to describe system hardware. A device tree is a tree data

structure with nodes that describe the device present in the system.

Each node has a value that describes the characteristics of the device.

At compilation, the boot firmware prepares the device information in

the form of device tree that can’t necessarily be dynamically detected

during boot, and then during boot, the firmware loads the device tree

into the system memory and passes a pointer to the device for the OS

to understand the system hardware layout. Unlike coreboot, the device

tree structure prepared by oreboot is more scalable and can be parsed by

existing OSs without any modification.

In oreboot, the device tree is mainly used to serve two different

purposes.

• Hardware device tree: Part of the mainboard directory,

this is used to describe the system hardware that the

system firmware is currently running. This is typically

named after the mainboard; for example, a device tree

name for RISC-V processor–based development board

HiFive is hifive.dts.

• oreboot device tree: This is the device tree used to define

the layout of the image that is flashed into the device.

The device_tree library inside the src/lib source code is used to

operate on the device tree data structure. Device Tree Syntax (DTS) is a

human-friendly text representation of the device tree, which is used by

Chapter 1 Spotlight on Future Firmware

57

the Device Tree Compiler (DTC) to convert into either Device Tree Blob

(DTB) format or Flattened Device Tree (FDT) format, a binary encoding

of the device tree structure. Figure 1-14 shows an example representation

of a simple hardware device tree that represents the HiFive board. Device

nodes are shown with properties and values inside each node.

Figure 1-14. Device tree example from oreboot HiFive mainboard

In the previous example, cpus, memory, refclk, and serial are node

names, and root node is identified by a forward slash (/). @ is used to

specify the unit-address to the bus type on which the node sits.

Chapter 1 Spotlight on Future Firmware

58

Driver Model

oreboot defines an unique driver model that creates a driver trait, an

interface that implements four functions: init(), read(), write(), and

shutdown(). The details of these functions are as follows:

Driver Functions Description

init() initializes the device.

pread() positional read. it takes two arguments:

- First argument: a mutable buffer that will get filled data from

the driver.

- Second argument: the position that one would like to read

from.

the function returns the result; the type of the result could be

either a number, defined the number of bytes being read, or an

error. if there are no more bytes to read, it returns an end-of-file

(eoF) error.

pwrite() positional writing. it takes two arguments:

- First argument: a buffer that contains data is used by the driver

to write on the hardware.

- Second argument: the position that one would like to write into.

the function returns the number of bytes written.

shutdown() Shuts down the device.

This model is useful for different types of devices like block devices and

character devices since the driver could ignore the position like the offsets

while operating on hardware devices. Here are some examples of different

driver types that oreboot supports:

Chapter 1 Spotlight on Future Firmware

59

• Physical device drivers: The drivers that are used to

operate on real hardware devices like memory drivers

are capable of performing reads/writes to physical

memory addresses, serial drivers used to read/writes

to serial devices, clock drivers to initialize the clock

controller present on the hardware, and DDR drivers to

perform DRAM-based device initialization.

• Virtual drivers: Drivers that are not associated with

any real hardware device but rather used to create

the interface for accessing the hardware device. For

example, the union driver is capable of stream input or

output to multiple device drivers; refer to the following

example of mainboard, which implements the union

driver for a serial device; and section reader, which

reads a section from another device window specified

using offset and size and returns EOF when the end of

the window is reached.

The following is an example of a mainboard implementing more than

one UART. The system firmware would like to use all of them and hence

implements the union driver as shown. The oreboot mainboard code

creates an array of these drivers, and the union driver uses this array.

Meanwhile, the console calls the init() function, initializes all these

UART controllers, and then writes a string using the pwrite() function to

write into all these UARTs.

let mut uarts = [

 &mut PL011::new(0x1E72_3000, 115200) as &mut dyn Driver,

// UART 1

 &mut PL011::new(0x1E72_D000, 115200) as &mut dyn Driver,

// UART 2

 &mut PL011::new(0x1E72_E000, 115200) as &mut dyn Driver,

// UART 3

Chapter 1 Spotlight on Future Firmware

60

 &mut PL011::new(0x1E72_F000, 115200) as &mut dyn Driver,

// UART 4

];

let console = &mut Union::new(&mut uarts[..]);

console.init();

console.pwrite(b"Welcome to oreboot\r\n", 0).unwrap();

 oreboot Boot Flow

The boot flow defined by oreboot is similar to coreboot, except for the fact

that oreboot has accepted that a firmware boundary has to be reduced,

so it makes sense to leverage more from the powerful payload offerings as

LinuxBoot with a more mature Linux kernel driver. oreboot replaces the

need to have a dedicated stage like ramstage, which is meant to perform an

operation that can be replaced by a powerful payload and load a payload.

The oreboot boot flow provides an option to load the Linux kernel as part

of the flash image as the payload from the payloader stage.

Facts Some of the work done in a coreboot project is separating
the payload loading and running operations from a dedicated stage
like ramstage and having a flexible design where the bootloader is
free to decide which stage can be used to load the payload. this
work is known as rampayload or coreboot-lite, which influences the
design of oreboot having an independent stage for payload operations
and being called from prior stages as per the platform requirements.

The following sections explain the oreboot boot flow in detail with

a hardware porting guide. The oreboot boot process is divided into

three stages.

Chapter 1 Spotlight on Future Firmware

61

• Bootblob: This is the first stage post CPU reset, which

is executed from the boot device. It holds the first

instruction being executed by the CPU. This stage is

similar to coreboot’s first stage called bootblock.

• Romstage: This is functionally similar to the coreboot

romstage boot phase, which is intended to perform the

main memory initialization.

• Payloader stage: This is only intended to load and run

the payload. This is a feature differentiator from the

coreboot, where the ramstage boot state machine has

tasks to load and run payload at the end of hardware

initialization.

Here is a more detailed description of each stage operations based

on the real hardware. The hardware used for this demonstration of the

oreboot boot flow is the open source HiFive Unleashed Board based on the

SiFive FU540 processor. Figure 1-15 shows the hardware block diagram.

Figure 1-15. Hardware block diagram of SiFive-HiFive Unleashed

Chapter 1 Spotlight on Future Firmware

62

In this example, RISC-V SoC has four pins (0001, MSEL0 is 1 and

MSEL1-3 are set to 0) called MSEL to choose where the bootloader is, and

Zeroth Stage Boot Loader (ZBL) is stored in the ROM of the SoC. ZBL loads

oreboot from the SPI Flash, and control reaches the bootblob.

Bootblob

In the oreboot boot flow architecture, bootblob is the first stage, which

gets control upon the CPU coming out from the reset. In a multiprocessor

boot environment, it’s getting executed by the Boot Strap Processor (BSP)

using temporary memory. Operations performed by the bootblock phase

include the following:

• The early piece of the code in bootblob is written in

assembly, which is executed by the CPU immediately

after release from power-on reset. It performs the

processor-specific initialization as per the CPU

architecture.

• It sets up the temporary RAM as Cache as RAM, aka

CAR or SRAM, as physical memory is not yet available.

• It prepares the environment for running Rust code like

setting up the stack and clearing memory for BSS.

• It initializes UART(s) to show the sign-of life using the

debug print message “Welcome to oreboot.”

• It finds the romstage from the oreboot device tree and

jumps into the romstage.

Here is some sample bootblob code written in assembly belonging to

the SoC directory:

Chapter 1 Spotlight on Future Firmware

63

soc/sifive/fu540/src/bootblock.S

/* Early initialization code for RISC-V */

.globl _boot

_boot:

 # The previous boot stage passes these variables:

 # a0: hartid

 # a1: ROM FDT

 # a0 is redundant with the mhartid register. a1 might not

be valid on

 # some hardware configurations, but is always set in QEMU.

 csrr a0, mhartid

setup_nonboot_hart_stack:

 # sp <- 0x02021000 + (0x1000 * mhartid) - 2

 li sp, (0x02021000 - 2)

 slli t0, a0, 12

 add sp, sp, t0

 # 0xDEADBEEF is used to check stack underflow.

 li t0, 0xDEADBEEF

 sw t0, 0(sp)

 # Jump into Rust code

 call _start_nonboot_hart

Figure 1-16 represents the operations performed by the bootblob stage

pictorially.

Chapter 1 Spotlight on Future Firmware

64

Figure 1-16. Operational diagram of bootblob stage

Romstage

The romstage is the stage invoked right after the bootblob in the boot

flow. This stage gets executed from the SPI Flash and performs DRAM

initialization. The responsibilities of the romstage are as follows:

• Perform early device initialization, for example

configuring memory-mapped control and status

register for controlling component power states, resets,

clock selection and low- level interrupts, etc.

• Initiate the DRAM initialization. Configure memory

controllers as part of the SoC hardware block. This

process involves running SoC vendor-specific routines

that train the physical memory or implementing

memory reference code in Rust (basically a direct

porting from C to Rust). For the HiFive Unleashed

platform, oreboot has implemented DDR initialization

Chapter 1 Spotlight on Future Firmware

65

code in Rust belonging to soc/sifive/fu540/

src/ddr*.rs by referring to open source FSBL

implementation.

Here is some sample romstage code written in Rust that

initializes clocks:

// Peripheral clocks get their dividers updated when the PLL

initializes.

let mut clks = [spi0 as &mut dyn ClockNode, spi1 as &mut dyn

ClockNode, spi2 as &mut dyn ClockNode, uart0 as &mut dyn

ClockNode];

let mut clk = Clock::new(&mut clks);

clk.pwrite(b"on", 0).unwrap();

Figure 1-17 represents the operations performed by the romstage

pictorially.

Figure 1-17. Operational diagram of romstage

Chapter 1 Spotlight on Future Firmware

66

Payloader Stage

The Payloader stage is the first stage on the RISC-V platform running from

the DRAM after physical memory is available. Unlike coreboot, where the

ramstage boot phase has many other tasks along with loading and running

the payload at the end of the ramstage, in oreboot, the payloader stage has

only one job: find, load, and run a payload. The payloader stage doesn’t

have any high-level firmware device drivers like storage device, audio

device, etc. This helps to reduce the complexity and save the SPI footprint

compared to other system firmware. Here is a sample payloader stage code

written in Rust that loads a payload file by the path specified in the oreboot

device tree and jumps into it:

use payloads::external::zimage::PAYLOAD;

let p = PAYLOAD;

writeln!(w, "Loading payload\r").unwrap();

p.load();

writeln!(w, "Running payload entry 0x{:x} dtb 0x{:x}\r",

p.entry, p.dtb).unwrap();

p.run();

Figure 1-18 represents the operations performed by the payloader

stage pictorially.

Chapter 1 Spotlight on Future Firmware

67

Figure 1-18. Operational diagram of payloader stage

Payload

An oreboot project by default uses LinuxBoot as a payload, which allows it

to load the Linux kernel from the SPI Flash into DRAM. The Linux kernel

is expected to initialize the remaining devices using kernel drivers that

include block devices and/or network devices etc. Finally, locate and

load the target operating system using kexec. LinuxBoot uses u-root as

initramfs, which is the root filesystem that the system has access to upon

booting to the Linux kernel. systemboot is an OS loader as part of u-root

to perform an iterative operation to attempt boot from a network or local

boot device.

Figure 1-19 represents the operations performed by the payload

(LinuxBoot) pictorially.

Chapter 1 Spotlight on Future Firmware

68

Figure 1-19. Operational diagram of payload stage

The payload operation is expected to end when the Linux kernel

part of LinuxBoot calls into the kernel image from the block device or

network and executes the first instruction. Figure 1-20 shows the final

system hardware component initialization state while it reaches an

operating system.

Chapter 1 Spotlight on Future Firmware

69

Figure 1-20. System hardware state at the kernel

To summarize, the complete open source system firmware model

using oreboot like the bootloader is not only meant to provide freedom

from running proprietary firmware blobs on hardware. Additionally,

it’s developed using safe system programming languages like Rust. The

payloader userland is written in Go and advocates the architectural

migration of the system firmware development using a high-level language

in the future. Finally, a reduced boot phase allows ample free space in the

flash layout, which will provide an opportunity to reduce the hardware bill

of materials (BoM) cost with instant boot experience.

 Open Source Device Firmware Development
System firmware is the firmware that is running on the host CPU after

it comes out from the reset. In traditional computing systems, system

firmware is owned by independent BIOS vendors (IBVs), and adopting

Chapter 1 Spotlight on Future Firmware

70

the open source firmware model will help to get visibility into their code.

This will help to design a transparent system by knowing the program

is running on the underlying hardware, and it provides more control

over the system. Earlier sections highlighted the path forward for system

firmware development in the future using open source system firmware as

much as possible. In a computing system, there are multiple devices that

are attached to the motherboard, and each device has its own firmware.

When a device is powered on, firmware is the first piece of code that

runs and provides the required instructions and guidance for the device

to be ready for communicating with other devices or for performing a

set of basic tasks as intended. These types of firmware are called device

firmware. Without device firmware being operational, the device wouldn’t

be able to function. Based on the type of the devices, a complexity in the

firmware is introduced. For example, if a device is a simple keyboard

device, then it has only a limited goal and no need to worry about regular

updates, whereas more complex ones, like graphics cards, need to define

an interface that allows it to interact with the system firmware and/or an

operating system to achieve a common goal, which is to enable the display.

The majority of device firmware present on consumer products

is running proprietary firmware that might lead to a security risk. For

example, at the 2014 Black Hat conference, security researchers first

exposed a vulnerability in USB firmware that leads to a BadUSB attack, a

USB flash device, which is repurposed to spoof various other device types

to take control of a computer, pull data, and spy on the user. A potential

solution to this problem is that device firmware should be developed using

open source so that the code can be reviewed and maintained by others

rather than only the independent hardware vendors (IHVs).

This section will describe the evolution in device firmware

development for discrete devices that has a firmware burned into

its SPINOR.

Chapter 1 Spotlight on Future Firmware

71

 Legacy Device Firmware/Option ROM
An option ROM (OpROM) is a piece of firmware that resides either in the

system firmware code as a binary blob or on an expansion card, which

needs to be copied into system memory and executed using legacy

interrupts by system firmware during the platform initialization phase. It

acts as an interface between the system firmware and underlying specific

hardware device. The BIOS Boot Specification (BBS) was developed to

standardize the initialization sequence of OpROM. Figure 1-21 shows a

sample discrete graphics where VBIOS is located inside a dedicated chip.

Figure 1-21. Discrete graphics card hardware block diagram

Chapter 1 Spotlight on Future Firmware

72

A common example of OpROM is the Video BIOS (VBIOS), which

can be used to program either on- board graphics or discrete graphics

cards and is specific to the device manufacturer. In this section, VBIOS is

referred to and used to initialize the discrete graphics card after the device

is powered on. It also implements an INT 10h interrupt (interrupt vector

in an x26-based system) and VESA BIOS Extensions (VBE) (to define a

standardized software interface to display and audio devices) for both the

pre-boot application and system software to use.

A video services BIOS interrupt sets up a real mode interrupt handler;

meaning, to get this interrupt serviced, the system needs to enter into real

address mode. As real mode is limited to 20-bit addressing, it provides

a limited space for OpROMs. A total 122KB (between 0xc0000 to 0xdffff,

sometimes if it’s extended and then stored at 0xe0000–0xeffff, and so on) is

shared by all option ROMs. An OpROM typically compacts itself by getting

rid of some initialization code (leaving behind a smaller runtime code).

During the power- on self-test (POST), the BBS specifies that the BIOS

will detect and shadow VBIOS into 0xc0000, and it will traverse the PCI

configuration space to check the Expansion ROM base address (PCI config

space header type 00 and 20 devices only have an expansion ROM base

address to support an add-on ROM) and copy the discrete card OpROM

from MMIO space to the predefined OpROM region. The system firmware

then scans the region and detects if the OpROM has a PnP option ROM

header. The following table describes the PnP OpROM header structure:

Offset Length Value Description

0x00 0x02 0xaa55 Signature

0x02 0x01 Varies option rom length

0x03 0x4 Varies initialization vector

0x07 0x13 Varies reserved

0x12h 0x02 Varies offset to pCi data structure

0x1a 0x02 Varies offset to pnp expansion header structure

Chapter 1 Spotlight on Future Firmware

73

• Signature: All ISA expansion ROMs are currently

required to identify themselves with a signature word of

AA55h at offset 0. This signature is used by the system

firmware as well as other software to identify that an

option ROM is present at a given address.

• Length: The length of the option ROM in 512 byte

increments.

• Initialization vector: The system BIOS will execute

a far call to this location to initialize the option

ROM. The field is four bytes wide even though most

implementations adhere to the custom of defining

a simple three-byte NEAR JMP. The definition of the

fourth byte may be OEM specific.

• Reserved: This area is used by various vendors and

contains OEM-specific data and copyright strings.

• Offset to PCI data structure: This location contains a

pointer to a PCI data structure, which holds the vendor-

specific information.

• Offset to PnP expansion header: This location contains

a pointer to a linked list of option ROM expansion

headers.

The system firmware performs a read operation to read the first two

bytes of the PnP OpROM structure and verifies the signature as 0xAA55. If

a valid option ROM header is present, then the system firmware reads the

offset + 02h to get the length of the OpROM and then performs a far call

to offset + 03h to initialize the device. After video OpROM has initialized

the graphics controller, it provides lists of services like setting the video

mode, character and string output, and other VBE functions to operate in

graphics mode.

Chapter 1 Spotlight on Future Firmware

74

Here is a list of a few supported functions implemented by

OpROM. The system BIOS needs to hook INT 10h to call these functions as

per programming requirements.

General Video Service Functions (AH = 00 to FF, except 0x4F)
Operation Function Subfunction

Set Video mode ah=0x00 al=Video mode

Set Cursor

Characteristics

ah=0x01 Ch bits 0-4 = start line for cursor in character

cell

bits 5-6 = blink attribute (00=normal,

01=invisible, 10=slow, 11=fast)

Cl bits 0-4 = end line for cursor in character cell

Set Cursor position ah=0x02 Dh,Dl = row, column

Bh = page number (0 in graphics modes;

0–3 in modes 2 and 3; 0–7 in modes 0&1)

write String (at, Vga) ah=0x13 al = mode

Bl = attribute if al bit 1 clear

Bh = display page number

Dh,Dl = row,column of starting cursor position

CX = length of string

eS:Bp -> start of string

VBE Functions (AH = 0x4F and AL = 0x00 to 0x15)

return VBe Controller

information

ah=0x4F al = 0x00; eS:Di = pointer to buffer in which to

place VbeinfoBlock Structure.

return VBe mode

information

ah=0x4F al = 0x01; CX = mode number; eS:Di = pointer

to modeinfoBlock Structure.

Set VBe mode ah=0x4F aX = 02h

BX = Desired mode to set

eS:Di = pointer to CrtCinfoBlock structure

Chapter 1 Spotlight on Future Firmware

75

Figure 1-22 describes the communication between video OpROM and

system firmware.

Figure 1-22. Discrete graphics card hardware block diagram

In this sample implementation, the system firmware calls video OpROM

to initialize the graphics controller and uses video services to set the display

to show the pre-OS display screen or OS splash screen during boot.

Figure 1-23 decodes the video OpROM from the system memory 0xc0000

location, and Figure 1-24 shows the OpROM initialization code in assembly.

Figure 1-23. Display video BIOS option ROM at address 0xC0000

Chapter 1 Spotlight on Future Firmware

76

Offset + 03h specified the initialization vector, which will transfer the

call into video OpROM initialization code for display initialization, which

is referred as jmp 0xbd11.

This execution of OpROM for device initialization has several

limitations while working with modern firmware solutions. Option ROM

attacks can be considered an initial infection or ones to spread malicious

firmware from one firmware component to another. Compromised

OpROM firmware can be viewed as an initial method of infection that

remains persistent even after modifying the system firmware. There is

still a legacy implementation, where the system firmware and/or payload

relies on the option ROM for device initialization and runtime services.

Therefore, modern devices like discrete graphics cards and network cards

still need to support legacy OpROMs.

Figure 1-24. Initialization vector address at address 0xC0003

Chapter 1 Spotlight on Future Firmware

77

 UEFI OpROM
The Graphics Output Protocol replaces the legacy video BIOS and

eliminatew the VGA hardware functionality from the discrete graphics

card or on-board graphics controller. It’s an UEFI implementation to create

the generic GOP UEFI display driver image that can be either located on

the device ROM or present inside system firmware. GOP has some unique

advantages over legacy OpROM.

• It has a modern and well-defined interface, which is

implemented using an industry-standard specification.

• All GPUs within a platform become “equal,” and there’s

no more unique “VGA-enabled VGA.”

• Code is written in C and doesn’t need a legacy interrupt

handler to communicate between the platform

and GPU.

• Implementing UEFI graphics OpROM using EBC (EFI

Byte Code) allows a single image to operate on multiple

CPU architectures.

• There are clearer and portable solutions that allow new

features to be implemented.

The services implemented by the GOP driver are available only until

EFI Boot Time Services are available (prior to ExitBootServices()).

However, the framebuffer populated by the GOP driver persists,

meaning the OS graphics driver and applications can continue to use

the framebuffer for graphics output. The implementation of the UEFI-

compliant video option ROM starts with an implementation of the UEFI

GOP driver. The GOP driver follows the UEFI driver model and hence

installs a driver binding protocol at the entry point of the UEFI driver. The

Chapter 1 Spotlight on Future Firmware

78

GOP driver binding protocol implements functions such as Supported(),

Start(), and Stop().

• Supported(): The “Supported” method of the GOP

driver binding protocol tests to see whether the given

handle is a manageable adapter. Also, check that

EFI_DEVICE_PATH_PROTOCOL and EFI_PCI_IO_PROTOCOL

are present to ensure that the handle that is passed is

a valid PCI device. The PCI I/O protocol gets the PCI

configuration header from the device and verifies that

the device is supported by the present GOP driver.

• Start(): The “Start” method of the GOP driver binding

protocol tells the graphics driver to start managing the

controller. The GOP driver uses the device-specific

knowledge to perform the following operations:

• Initialize the graphics adapter.

• Initialize platform parameters like LID Present,

Dock Supported, etc.

• Initialize the display manager module that

enumerates all the supported displays and checks

its live status and EDID to detect the enabled

display device.

• Create child handles for each detected and enabled

physical output device and install the EFI_DEVICE_

PATH_PROTOCOL.

• Get EDID information from each enabled physical

output device and install EFI_EDID_DISCOVERED_

PROTOCOL on the child handle.

Chapter 1 Spotlight on Future Firmware

79

• Create child handlers for each valid combination

of two or more video output devices and install

EFI_DEVICE_PATH_PROTOCOL.

• Set the initial mode, required to initialize the mode

field of GOP.

• Install the GRAPHICS_OUTPUT_PROTOCOL on the

selected device.

• Stop(): The Stop function performs the opposite

operation of the Startfunction. In general, Stop()

functions uninstall all protocols, close the protocol

instances, release all resources, and disable the

graphics adapter.

Figure 1-25 shows an example of GOP driver stack implementation.

Figure 1-25. GOP driver implementation

Chapter 1 Spotlight on Future Firmware

80

Apart from initializing the graphics adapter, the GOP protocol

publishes three functions: QueryMode(), SetMode(), and Blt(). They

allow the system firmware to communicate with the device hardware

to configure the display capabilities. These functions replace the legacy

OpROM VBE functionality.

• The QueryMode() function is used to return extended

information on one of the supported video modes. It’s

important that QueryMode() only return modes that can

actually be displayed on the attached display device.

• The SetMode() function allows system firmware to

select the specific mode based on the mode argument,

between 0 and numModes.

• The Blt() function is used for transferring information

to and from the video buffer. It allows graphics contents

to be moved from one location of the video frame

buffer to another location of the video frame buffer.

The GRAPHICS_OUTPUT_PROTOCOL.Mode pointer is populated when

the graphics controller is initialized and gets updated with the SetMode()

function call. The FrameBufferBase member of this object may be used

by a UEFI OS loader or OS kernel to update the contents of the graphical

display after ExitBootServices() is called and the Graphics Output

Protocol services are no longer available. A UEFI OS may choose to use this

method until a graphics driver can be installed and started.

The EDKII build infrastructure tools allows one to convert one or more

UEFI drivers in PE/COFF image formats into a single PCI Option ROM

image that can be included with a discrete add-in card. When a discrete

add-in card, for example, a graphics card, is attached over a PCI slot into

a target platform, the PCI Bus Driver detects the presence of PCI OpROM

contents, and the UEFI driver is loaded into memory and executed

automatically. See Figure 1-26.

Chapter 1 Spotlight on Future Firmware

81

Figure 1-26. Hybrid ROM layout

EfiRom is the utility located inside the EDKII source code at

BaseTools/Source/C/EfiRom and is used to build PCI OpROM images

containing UEFI drivers, Legacy OpROM, or both. It also allows UEFI

drivers to be compressed using the UEFI compression algorithm as per

the UEFI specification. The following command shows the method to

generate a single PCI OpROM image that combines one UEFI binary and

one legacy OpROM:

EfiRom -o FinalOpRom.rom -f <vendor_id>-i <device_id> -ec

File1.efi -b Legacy.bin

Chapter 1 Spotlight on Future Firmware

82

Figure 1-26 shows the layout of the hybrid OpROM image located on a

graphics add-on card.

Here is a comparison of interfaces implemented by the UEFI graphics

driver part of UEFI OpROM and Legacy VGA BIOS:

Set a Display
Mode

Retrieve EDID
from a Display
Device

Display Switch

GOP
Driver

GRAPHICS_

OUTPUT_

PROTOCOL.

SetMode()

using EFI_EDID_

DISCOVERED_

PROTOCOL

reentrant with different child

handle in EFI_DRVER_BINDING.

Start() followed by a

SetMode()

Legacy
VGA
BIOS

Set VBe mode

using aX =

0x4F02 and other

subfunctions

VBe DDC

extension aX =

0x4F15 and other

subfunctions

implement vendor-specific Vga

BioS extension

Currently, the majority of GPU vendors have migrated graphics device

firmware to a GOP driver–based solution for add-on graphics cards or

on-board GPU to be legacy-free. The GOP driver images that are part of

the add-on graphics card can be signed and authenticated by the vendor

and can be verified using Secure Boot. But for the hybrid image on an

add-on graphics card, Secure Boot is unable to verify the legacy OpROM

image as the legacy VGA BIOS doesn’t support authentication and hence is

considered to be a security threat.

 Why Is Open Source Device Firmware Needed?
Typically, IHVs are developing firmware for the device that is flashed

into the ROM, with an assumption that the device doesn’t need periodic

updates. But there might be cases where preflashed device firmware

exposed some vulnerability while operating as part of the whole system

Chapter 1 Spotlight on Future Firmware

83

and communicating with other devices and the host CPUs. Also, these

devices have dedicated firmware storage for to keep the device firmware

in, which is not accessible by the host CPU and hence unable to provide

a patch over the runtime kernel or system firmware during boot. Here are

several factors that highlight the need for an open source model while

developing the device firmware:

• Performance: As most device firmware is not able to

handle the runtime updates and becomes stale over

the period of time, it may not be able to work with the

latest processor and chipsets. Open source firmware

development would provide an opportunity to update

the device firmware code with the latest algorithm

and research that would provide better performance

compared to proprietary firmware.

• Security: Open source device firmware doesn’t allow

any hidden backdoor for snooping into the system.

As device firmware would get regular maintenance,

common vulnerabilities are expected to get fixed and

updated without any delay.

• Extensibility: While vendor device firmware comes with

fixed sets of capability, open source firmware would

expose its capability beyond its fixed scope.

• Community support: The open source community

provides more eyes and hands for maintaining

the code.

• Cost: The product source code is available freely

using a GPL license and hence doesn’t require any

subscription and licensing fees.

Chapter 1 Spotlight on Future Firmware

84

Many wireless routers are using open source device firmware. For

example, TP-Link, which is Xiaomi router firmware, is derived from

OpenWrt, an open source firewall/router distribution based on the

Linux kernel.

 Open Source Manageability Firmware
Development
In computing, the system owner typically has access to control and

manage all the required hardware and software services for the target

device. To satisfy the need for hardware management, the system

administrator might set up an in-band management system through

Virtual Network Computing (VNC) and Secure Shell (SSH) that provides

remote access for the device over the network or using serial ports. This

mechanism to access the device is typically cost effective because software

that is required for remote management is installed on the system itself

and works only after the system has booted to an operating system. Hence,

in-band management has limited scope, and when the system is off, it’s

not possible to be managed by in-band management. It also isn’t capable

of meeting the remote IT infrastructure management requirements, where

an IT administrator would like to access system firmware settings, reinstall

the operating system remotely, or provide a fix for when the system

is unable to boot. Figure 1-27 shows the in-band management block

diagram.

Chapter 1 Spotlight on Future Firmware

85

Figure 1-27. High-level diagram of in-band remote management

This mode of managing the remote systems doesn’t have any

dependency over the underlying firmware running on the remote

system. When the network is down or the system is in an off state, one

needs physical access to bring the system back into the network; it needs

someone to travel near to the device, which might not be a feasible

solution for data centers and remote sites. The Natick project from

Microsoft is building the world’s first underwater data center. Therefore,

out-of-band management provides an alternative path for managing the

remote system. Even when the system is not on a network, it is turned off,

in sleep mode, hibernated, or inaccessible to any mode of in-band access.

This mode of operation relies on the remote management hardware,

which is completely independent of the main processor power supply

and network connection and can even perform remote operations such as

reboot, shutdown, and monitoring the hardware sensors (i.e., fan speed,

power voltages, hard disk health, chassis intrusion, etc.). Figure 1-28 shows

the out- of- band remote management hardware block diagram.

Chapter 1 Spotlight on Future Firmware

86

Figure 1-28. High-level diagram of out-of-band remote management

The modern server motherboards are the default coming with a built-

in remote management controller. The out-of-band remote management

can use either dedicated network interface controllers (NICs) or shared

NICs for remote access. The shared NIC can be used for multiplexing the

Ethernet connection between the host system operating system and the

remote management controller so that while incoming traffic flows on

the hardware, it is routed to the remote management controller before

reaching the host system. It also has multiple interfaces like Enhanced

Serial Peripheral Interface (LPC/eSPI), PCIe, SMBUS, USB, etc., to

communicate with the host system.

Here are the operations that a remote admin can perform with out-of-

band enabled:

• Keyboard-video-mouse (KVM): Out-of-band

management allows access to host CPU resources

like the keyboard, video, and mouse, which provides

broadcasting of video output to the remote terminals,

and receiving the input from the remote keyboard and

mouse can be used to configure the system firmware

settings even prior to booting the OS.

Chapter 1 Spotlight on Future Firmware

87

• Perform remote recovery: An admin can also access

remote system disk images from the local boot media

or over a network and therefore can be used to recover

the system in case the OS crashes and the system

reaches an OS recovery.

• Remote power on/off: The remote administrator can

schedule wake and update-like features to ensure the

system is always updated with critical security patches.

It also ensures the system’s availability over the network

24/7 using resource preservation by keeping the device

in low- power mode after an update.

• Remote sessions: It allows client-initiated remote

sessions to monitor, manage, and troubleshoot any pre-

OS and OS-related defects.

Out-of-band management requires seamless access of the system,

and the remote management controller belongs to the platform hardware.

The firmware that is running as part of the remote management controller

is considered to be highly privileged components (Ring -3 as described

earlier). This firmware remains active during the entire life of the system

and can even control the system when it is powered off. Thus, any

vulnerability that exists in the manageability firmware can easily remain

hidden from the traditional security measures and put the entire system

at risk where intruders can take over the system remote management and

allow data exfiltration attacks.

This section will provide a brief overview of some manageability

firmware that was developed using proprietary firmware and looking at the

possibilities of migrating to the open source firmware.

Chapter 1 Spotlight on Future Firmware

88

 Baseboard Management Controller
A baseboard management controller (BMC) is a special processor that

sits on the server motherboard and is responsible for providing the server

management. Other components like high-end switches and Just a Bunch

of Disks (JBODs) and/or Just a Bunch of Flash (JBOFs) platforms also

include BMCs for out-of-band management. The BMC is responsible

for monitoring and managing the physical state of a computer, network

server, or other sensor- based hardware and passing that information

to the system administrator through an independent connection. The

key parameters that BMC measures are temperatures and voltages, fan

speeds, humidity, inventory data such as serial numbers or product

names, and remote powering on/off of the main CPUs. It notifies the

system administrator if any of these parameter values has drifted from

its allowable known limit. It allows the system admin to take measures

to avoid any anomalies in the server stability and reliability. Figure 1-29

shows the hardware block diagram of a server platform using an ASPEED

BMC chip (AST2500).

Figure 1-29. Server motherboard hardware block diagram with BMC

Chapter 1 Spotlight on Future Firmware

89

Figure 1-30 shows the AST2500 BMC chip, which is the leading BMC

chip used on the server platform (the latest is AST2600 with ARM Cortex

A7) using an ARM11-based SoC with these features:

• Ethernet: The Reduced Media-Independent Interface

(RMII) and Reduced Gigabit Media- Independent

interface (RGMII) are interfaces to connect an Ethernet

MAC block to a PHY chip.

• Flash memory: This is the Serial Peripheral Interface

(SPI) flash memory that contains the BMC firmware for

booting the SoC.

• Memory: This is 800Mbps DDR3 or 1600Mbps DDR4

memory with 16-bit data bus width. Having more

memory provides increased performance.

• PCIe: The on-chip PCIe 2D VGA provides a local

display capability with resolution up to 1920×1200

without adding an extra VGA add-on card.

• USB: The USB 2.0 virtual hub controller allows up to

five devices and a USB 1.1 HID device controller for

keyboard and mouse support.

• LPC/eSPI: This is a Low Power Count (LPC) or

Enhanced SPI (eSPI) bus for communicating with

the host.

Chapter 1 Spotlight on Future Firmware

90

Figure 1-30. AST2500 hardware block diagram

BMC allows system administrators to make use of KVM functionality

for remote redirection of the keyboard, video, and mouse to a remote

network-attached management console. Hence, it allows the remote

admin to perform the low-level tasks while the operating system is not yet

available.

 Intelligent Platform Management Interface

The Intelligent Platform Management Interface (IPMI) is an interface

specification that allows manageability firmware to monitor or manage the

host system independent of the host CPU, system firmware, and operating

system. IPMI is a message-based, hardware-level interface specification

that is used by the system admin for out-of- band management of

Chapter 1 Spotlight on Future Firmware

91

computer systems. This specification, jointly developed by Intel, Hewlett

Packard, Dell, and NEC, is intended to perform the following operations:

• OS-independent scenarios: Regular monitoring of

platform-critical components like temperature. Various

built-in sensors in the computer system and power

supply voltage allow remote access to the system if

the host system is powered off. It allows changing the

BIOS settings for recovery boot and/or installing new

operating systems into the block device.

• While the OS is running: It allows the admin to access

the operating system login console remotely to manage

services such as installing virtual drives, populating

management data and structures to the system

management software, etc.

IPMI supports the extension of platform management by connecting

additional management controllers to the system. Figure 1-31 shows

the IPMI subsystem block diagram, which consists of BMC as the main

controller and other management controllers distributed among different

system components that are referred to as satellite controllers. The BMC is

the heart of the IPMI architecture that manages the interface between the

system management software and the platform management hardware.

It provides autonomous monitoring, event logging, and recovery control,

and it works as the main channel between the system management

software and the IPMB and ICMB. The Intelligent Platform Management

Bus/Bridge (IPMB) is an I2C-based bus that provides a standardized

interface between BMC and the satellite controllers within a chassis. It also

serves as a standardized interface for auxiliary management add-in cards.

The Intelligent Chassis Management Bus (ICMB) provides a standardized

interface for connecting satellite controllers and/or the BMC in another

chassis. By providing the standardized interface, a baseboard can be

easily integrated into a variety of chassis that have different management

Chapter 1 Spotlight on Future Firmware

92

features. The Field Replaceable Unit (FRU) information is used to provide

the inventory information, such as vendor ID and manufacturer, etc.,

about the boards that the FRU information device is located on. A sensor

data record (SDR) repository provides the properties of the individual

sensors (i.e., temperature, fan speed, and voltage) present on the board.

Physical interfaces to the BMC include SMBUSs, the RS-232 serial console,

and IPMB, which enables the BMC to accept IPMI messages from other

management controllers in the system.

Figure 1-31. IPMI subsystem block diagram

Chapter 1 Spotlight on Future Firmware

93

There is a significant concern that the BMC is a closed infrastructure

that allows administrators to have direct access to the host systems. A

direct serial connection to the BMC is not encrypted, and the connection

over the LAN may or may not use encryption and might raise the platform

security risks. The following sections provide some serious security

concerns with BMC and the reason for open source adaptation in the BMC

project.

Figure 1-32 shows the typical server platform remote management that

allows remote accesses with BMC implementing IPMI specifications.

Figure 1-32. Remote server management using BMC-IPMI

Chapter 1 Spotlight on Future Firmware

94

The assumption was that the admins would be managing the

computer systems over the trusted and controlled network, and the IPMI

stack doesn’t pay great attention to ensuring security. Many BMC firmware

doesn’t implement Secure Boot. The BMC is the ultimate security liability

due to its privileged operations, and a compromised BMC would allow

attackers to have access to a remote network connection, which had been

in the realm of physical administrative access.

The BMC would allow the remote admin to access the OS console

and mount the virtual media, typically used for recovering remotely or

installing a custom OS image. A group of security researchers has found

a severe BMC vulnerability on a server platform where the virtual media

service allows plaintext authentication, allows unencrypted data over

network, uses a weak encryption algorithm using a fixed key compiled

into the BMC firmware, and possibly allows authentication bypass while

authenticated to the virtual media service. These weaknesses would

allow an attacker to gain unauthorized access to the virtual media. The

BMC hardware allows the creation of virtual USB devices. Hence, upon

authenticating using a well-known default username and password for

the BMC, an attacker would be able to perform any of a USB-based attacks

against the server remotely including data exfiltration, booting from

untrusted OS images, or direct manipulation of the system using a virtual

keyboard and mouse. A study also reveals that more than 47,000 BMCs

from different countries are exposed to the Internet. Also, an attacker

who compromises the host system could use it to attempt to compromise

the BMC as well, as BMC always remains on without power-off. Hence, it

would be difficult to remove such malware from the BMC. A BMC rootkit

could provide the attacker with backdoor access that remains hidden from

IPMI access logs and insusceptible to host OS reinstallation or password

changes. In 2019, a vulnerability was detected on the BMC chip, where

malware could be installed on the BMC from the local host via the PCIe or

LPC interface. Because of the closed nature of the IPMI implementation,

once attackers gain control of the BMC, it’s difficult to know their presence

Chapter 1 Spotlight on Future Firmware

95

and remove them from the system. Such requirements lead the data

centers to adopt the BMC firmware that is getting developed using open

source projects.

 OpenBMC

The OpenBMC project is a Linux Foundation project, which is intended

to replace the proprietary BMC firmware with a customizable, open

source firmware implementation. OpenBMC is a Linux distribution for

management controllers that is used in devices such as servers, rack

switches, telecommunications, etc. In 2014, four Facebook engineers at

Facebook’s hackathon event created the first prototype of the open source

BMC firmware, called OpenBMC for BMC inside the Wedge (a rack switch

developed by Facebook) platform. In 2018, OpenBMC became a Linux

Foundation project. OpenBMC uses the Yocto Project for creating the

building and distribution framework. It uses D-Bus as an interprocess

communication (IPC) method. OpenBMC includes a web application for

interacting with the firmware stack. OpenBMC added Redfish support for

hardware management.

Facts redfish is an open industry-standard specification used for
hardware management. it is defined by the Distributed management
task Force (DmtF). openBmC uses redfish as a replacement for ipmi
over lan.

The features being implemented by the OpenBMC include the

following:

• Host management: power on/off, cooling, LEDs,

inventory, and events

• Compliant to the IPMI 2.0 specification

Chapter 1 Spotlight on Future Firmware

96

• Code update support for multiple BMC/BIOS images

• Provides web-based user interface

• REST management: BMCWeb Redfish, host

management using REST APIs

• SSH-based SOL

• Remote KVM

• Virtual media, etc.

This section provides the implementation details of OpenBMC running

on Wedge. As described earlier in Figure 1-26, BMC hardware is a reduced-

feature computer system; hence, OpenBMC is designed as a complete

Linux distribution so that it can extend the support for other BMC vendor

SoCs and boards. The OpenBMC project includes a bootloader as u-bootb,

a Linux kernel with a minimal rootfs that contains all the tools and binaries

needed to run OpenBMC, and board-specific packages:

• Both the bootloader and the Linux kernel include

various SoC-specific firmware and hardware drivers

like I2C, USB, PWM, and SPI drivers, etc.

• The open source packages include common

applications such as busybox, i2c tools, openssh,

and Python.

• The board-specific package includes initialization

scripts and tools that are specific to a board. Examples

are a tool that dumps inventory from the EEPROM and

a fan-controller daemon to control the fan speed based

on environment readings.

Chapter 1 Spotlight on Future Firmware

97

Figure 1-33 illustrates the OpenBMC package running on the BMC

inside the Wedge platform.

Figure 1-33. OpenBMC Stack on the Wedge platform

Chapter 1 Spotlight on Future Firmware

98

All packages in OpenBMC are grouped into three layers, as

shown here:

Common
Layer

this layer includes packages that can be used across different SoCs

and boards. For example:

common/recipes-rest

common/recipes-connectivity

common/recipes-utils

SoC Layer the SoC layer includes packages that are specific to BmC SoCs.

Figure 1-29 shows the SoC layer is part of both the bootloader and

linux driver as it implements a specific driver to communicate with the

aspeed BmC chipset. For example:

meta-aspeed/recipes-bsp/u-boot

meta-aspeed/recipes-core

meta-aspeed/recipes-kernel/linux

Board
Layer

the packages being included in this layer are specific for the current

board. Figure 1-29 shows the configuration, initialization scripts, and

tools that are specific for wedge. For example:

meta-aspeed/recipes-core

meta-aspeed/recipes-kernel

meta-aspeed/recipes-wedge

Generating an OpenBMC image for a specific board requires these

three layers: the common layer, a SoC layer for the BMC SoC used in the

board, and a board-specific layer for the targeted BMC board.

 u-bmc

u-bmc is a project that was developed almost at the same time as

OpenBMC. u-bmc is a Linux OS distribution for the BMC that was

developed using open source firmware. The goal of u-bmc is to ensure

that critical and highly privileged code like the BMC is easy to audit

Chapter 1 Spotlight on Future Firmware

99

and adheres to modern security. u-bmc was written in Go and replaces

the industry-standard IPMI with gRPC to reduce the attack surface and

provide improved security.

u-bmc uses u-root as a framework to create a minimal Linux

distribution that gets loaded after bare- minimal initialization by the BMC

bootloader. Figure 1-34 shows the u-bmc boot flow where it loads the

Linux kernel after the basic platform initialization as part of u-bmc.

Facts u-root incorporates four different projects as follows:

• go versions for standard linux tools, for example: ls,
cp, etc.

• to compile many go programs into a single binary

• to create a go-based userland that works as initramfs
for the linux kernel

• go bootloaders that use kexec to boot linux kernels

Chapter 1 Spotlight on Future Firmware

100

Figure 1-34. u-bmc firmware boot flow

It’s possible to ship the entire server firmware development using open

source firmware where the system firmware is developed using coreboot,

and u-bmc can be used for the BMC to boot the Linux distribution.

 RunBMC

The benefit of open source is not only limited to firmware and software.

Using open source projects has security advantages over closed source

firmware software, where with more eyes and hands for review, testing

and bug fixes provide improved code quality. Within Open Compute

Chapter 1 Spotlight on Future Firmware

101

Project (OCP), the community has started looking into designing open

source hardware that provides more efficient, flexible, secure, and scalable

design. RunBMC is an open source hardware specification that defines the

interface between the BMC subsystem and OCP hardware platforms, such

as network or computer motherboards. The BMC is built around a SoC that

provides access to common functionality like RMII, and RGMII provides

access to the Ethernet, PCIe, or LPC/eSPI interface to interact with the

host system. Typically, the BMC chip is soldered onto the motherboard.

The RunBMC design separates the BMC from the host motherboard by

creating a RunBMC daughterboard card that interfaces with the host

system through a 260-pin SODIMM DDR4 connector. Figure 1-35 shows

an example of RunBMC daughterboard I/O connectivity. The RunBMC

interface includes specifications such as RGMII, RMII, LPC/ESPI, PCIe,

USB and various serial interfaces, and GPIOs for communication.

Figure 1-35. RunBMC daughterboard card block diagram

This design is more stable and secure because it modularizes the

BMC subsystem, where the entire security effort is now shifted onto a

single BMC card. It provides an opportunity to vendors for hardening the

Chapter 1 Spotlight on Future Firmware

102

hardware security independently by adding security features like Titan,

Cerberus, or TPM chips into the daughter card to implement a hardware-

based root of trust. Also, a swappable BMC card is easy to replace if

detected vulnerable or updated, without impacting the entire host system.

To summarize, out-of-band management for computing systems is

an innovation that saves costs and minimizes the computer downtime on

failure without physically visiting the data centers. But the availability of

monitoring, accessing, and controlling the host system using BMC might

increase the platform attack surface due to the closed source nature of

BMC firmware and the higher privileged level that it operates. In the past,

the security researchers have done ample studies to highlight the BMC

vulnerabilities. The OpenBMC project sets the stage for BMC firmware

and hardware development using an open source model. Having an open

source hardware interface and BMC firmware developed with open source

firmware provides visibility into the utmost privileged rings of the platform

security, which was always closed otherwise.

 Zephyr OS: An Open Source Embedded Controller
Firmware Development
This section provides a brief overview of the embedded controller (EC)

that is often found in low-power embedded systems and is responsible

for managing various tasks that the system firmware and an operating

system can’t handle. It’s important to understand the EC hardware control

block, its communication with the host system, etc. This knowledge is

essential to establish the trust in the system boot process, as the firmware

that is running as part of the EC is an independent entity in the computing

system that is capable of accessing the platform components directly.

The majority of EC projects are developed using proprietary code;

hence, it’s important to have visibility into all firmware that is part of the

computing system.

Chapter 1 Spotlight on Future Firmware

103

 Embedded Controller

The embedded controller can refer to the heart of the client and IoT

computing device. The EC is the first microcontroller unit (MCU) on

an embedded system that receives power when the user presses the

power button or any other possible source to power on the system. The

EC is responsible for orchestrating the platform power sequencing in

recommended order (as per the platform design guide) so that it can

release the host CPU from reset. In addition, it does lots of other things.

• Battery charging: Tasks includes managing the battery

charger and the battery, detecting the presence of AC,

and reporting its change status.

• Thermal management: Tasks include measuring the

temperature of board components (CPU, GPU, several

sensors on board) and taking action to control the fan

speeds, CPU throttling, or force power off based on

critical sensor data.

• Keyboard: The EC is also referred to as the keyboard

system controller (KSC), which takes care of receiving

and processing signals from the keyboard.

• Hardware buttons and switches: Tasks include receiving

and processing signals from hardware buttons (typically

laptop/tablet button array) and switches (laptop lid).

• Backlight, LEDs: The EC implements the LED’s control

indicators (RGB) for battery, power, AC, caps lock, num

lock, scroll lock, sleep, etc. Also, it is able to control the

display and keyboard backlight.

• Peripheral control: The EC is able to turn on and off

several platform components like WiFi, Bluetooth,

USB, etc.

Chapter 1 Spotlight on Future Firmware

104

• Debug interface: The EC controller provides a UART

port for serial debug and a Port 80h BIOS debug port.

These are primarily used for testing, debugging, and

remote administration of the device.

The embedded controller is a separate chip that is soldered on the

motherboard, which includes a low- power processor, memory (SRAM

and ROM), several I/Os, and an interface with the host system through

one of the common interfaces such as Low Pin Count (LPC), eSPI, and

I2C. It’s being designed as a stand-alone microcontroller that can operate

in low-power mode. The EC can access any register in the EC address

space or host address space. The LPC/eSPI host controller can directly

access peripheral registers in the host address space. Figure 1-36 shows

a generic embedded controller block diagram. The embedded controller

always remains on if the system has power attached. With the release of

the internal reset signal that resets the processor in the EC control block,

the processor will start executing code from the ROM. The boot code part

of ROM executes a secure bootloader, which downloads user code from

an external SPI Flash and stores it in the SRAM. After that, the boot code

jumps into the user code and starts executing.

Facts there are two possible ways that define how the eC should
access its user code from Spi Flash.

• Master attached flash sharing (MAFS): in this mode, the
eC won’t have a dedicated Spi Flash; rather, it shares
the Spi Flash with the host system pCh. eC will access
Spi Flash over the eSpi flash sharing channel.

• Slave attached flash sharing (SAFS): the eC will have access
to dedicated Spi Flash using the Spi interface, and pCh will
access Spi Flash over the eSpi flash sharing channel.

Chapter 1 Spotlight on Future Firmware

105

Figure 1-36. Generic embedded controller block diagram

After the user code starts executing, it configures the GPIOs as per

the platform needs and initializes the host interface. The EC and host

system can communicate with each other using EC HOST commands

and trigger ACPI events for interrupting host system and memory-

mapped regions shared between EC and Host CPU address space. The

following is an embedded controller firmware architecture overview so

you can understand the internals of EC operations that help to perform

independent tasks in a timely manner.

Chapter 1 Spotlight on Future Firmware

106

 EC Firmware Architecture

Embedded controller firmware is responsible for performing the platform

power sequencing and remains active all the time even when the

platform control reaches the operating system. It needs to perform several

independent tasks such as thermal monitoring, battery management,

keyboard control, etc. This section will provide a high-level firmware

architecture overview so you can understand the innards operations being

managed by the EC.

Tasks

Most of the operations being performed by the embedded controller are

in the context of a task. Since embedded controllers are not multicore,

the scheduling of the tasks is done using some time slicing algorithm to

achieve the multitask execution. Each task has its own fixed stack size

assigned. There is no heap (malloc) to use, and all variable storage is

explicitly declared at build time. Each task has its given priority, and it

continues to run until it exits or a higher-priority task wakes up and takes

control away from a lower-priority task. At a high level, it’s a loop that

initiates all tasks unless there are wait eventsor a define sleep duration

before resuming a task.

Callbacks

Callbacks allow you to register a function to get executed at a later point of

time when a particular event occurs such as a callback to handle all button

change events. Typically, these callbacks are registered by one module and

invoked by different modules. If more than one callback needs to be run at

the same time, then it’s getting called as per the priority order.

Chapter 1 Spotlight on Future Firmware

107

GPIOs

The board-specific code inside the EC source is to configure the GPIOs

to allow SoC power transition and system transitions. The GPIOs can be

configured as inputs, outputs, and interrupts. Typically, these are getting

configured as part of the board init() function or based on certain

callbacks like power off() while the system is transiting its state. The

interrupt handles part of each module to read the GPIO status prior to

transferring the call into the handle functions.

Modules

Operations being managed by the embedded controller are grouped

into modules, and each module is self- contained after the GPIOs are

configured. This includes initialization sequence, state machines,

and interrupt handlers. Examples of such modules are peripheral

management, power sequencing, SMC host, battery management, thermal

management, KBC host, etc.

Debugging

EC firmware provides a set of debug services such as serial console,

exception handler, and port 80 display.

• Serial console: This is the traditional approach while

developing or debugging EC firmware, where a serial

console would be handy to indicate the problem. Also,

some EC implementations use the static console buffer

for ease of debugging, while the host reset doesn’t clear

this buffer and persists across multiple reboots. An

interactive EC console would help to run various key

commands and system management independent of

the host system.

Chapter 1 Spotlight on Future Firmware

108

• Exception handler: If the EC firmware runs into an

error, the easiest way to inform the user about the

problem is by dumping the current operating stack.

The exception handler contains some interesting

information like the program counter (pc) and link

register (lr), which indicates the code that the EC was

running when the panic occurred.

• Port 80 display: Initialize the port 80 display and use

this to indicate any error in the following format: ECxx,

where xx refers to the specific error code.

Host CPU to EC Communication

The embedded controller provides a unique feature that allows you to

perform complex low-level functions through a simple interface to the host

CPU. The most commonly used embedded controllers include different

communication channels that connect the embedded controller to the

host CPU, allowing bidirectional communications. It helped to reduce the

host processor latency in communicating with the embedded controller.

There are different methods by which the host CPU communicates with

the embedded controller.

• Host commands

• Embedded controller interface

• Shared memory map

Host Commands

The host CPU communicates with the EC by issuing host commands.

These commands are identified by a command ID. When a host CPU is

intended to issue a command (and data) to the EC, depending on the

current operation phase (i.e., system firmware/BIOS or OS), it involves

Chapter 1 Spotlight on Future Firmware

109

other software components. If system firmware is sending the host

commands, it can directly send them to the EC, but from the OS layer, it

first communicates via the EC kernel drivers, and then it receives the raw

commands and sends them on the EC. The host packet is received by the

EC board-specific code, which further sends the command to the common

layer that runs the host command. While this is happening, the EC needs

to indicate to the host that it is busy processing and not yet ready to give a

response. If the host command expects a response, then the EC responds

with the result and data to the host CPU. An example of a host command is

to read the board ID by sending the SMCHOST_GET_FAB_ID command 0x0D

to the EC.

Embedded Controller Interface

The Embedded Controller Interface connects embedded controllers to

the host data bus, allowing bidirectional communications. The embedded

controller is accessed at 0x62 and 0x66 in the host system I/O space.

Port 0x62 is called a data register (EC_DATA) and allows bidirectional

data transfers to and from the host and embedded controller. Port 0x66

is called the command/status register (EC_SC); it returns port status

information upon a read and generates a command sequence to the

embedded controller upon a write. Figure 1-37 shows that this interface is

implemented using the ACPI specification. The figure defines more than

one type of communication using the host interface.

• The embedded controller command set allows

operating system–directed configuration and Power

Management (OSPM) to communicate with the

EC. The ACPI defines the commands between 0x80

and 0x84 to tell the EC to perform an operation. For

example, the Read Embedded Controller (RD_EC)

command 0x80 allows OSPM to read a byte in the

address space of the embedded controller.

Chapter 1 Spotlight on Future Firmware

110

• The host waits for the Input Buffer Full (IBF) flag on

the EC_SC to be 0.

• The host writes the command byte to port 0x66 and

the address byte to port 0x62.

• The EC generates SCIs in response to this

transaction from the SMC ACPI handler.

• The SMC command handler passes control to the

actual EC SoC code. To receive data from the EC,

wait for Output Buffer Full (OBF) to be set, which

indicates there is incoming data.

Figure 1-37. Embedded controller shared interface

• When the embedded control has detected a system

event that must need to communicate to OSPM, it first

sets the SCI_EVT flag in the EC_SC register, generates

an SCI, and then waits for OSPM to send the Query

Chapter 1 Spotlight on Future Firmware

111

Embedded Controller (QR_EC) command 0x84. The

OSPM driver detects the EC SCI when the SCI_EVT

(SCI event is pending) flag in the EC_SC register is

set and sends the QR_EC command. Upon receipt of

the QR_EC command byte, the embedded controller

places a notification byte value between 0x00 and

0xFF, indicating the cause of the notification. OSPM

driver query ACPI control method with that value in

the form of _Qxx where xx is the number of the query

acknowledged by the embedded controller. Here’s an

example to explain the scenario better:

• A change in the LID switch status would trigger an

GPE from the GPE bit (LAN_WAKE_N) tied to an

embedded controller.

• The OSPM driver queries the EC to know the

query number.

• The host system firmware has implemented a

control method (_Qxx) corresponding to the

OSPM query.

• The ACPI control method notifies OSPM that the

LID switch status has changed to Notify (LID0,

0x80); LID0 is ACPI device entry for LID.

• The OSPM driver further calls the LID ACPI

device control method to read the LID switch

status (LIDS).

Chapter 1 Spotlight on Future Firmware

112

• LID switch status can be read using the EC ACPI

command either through port 0x62/0x66 or

through the LPC register.

• Upon reading from the EC, the ACPI control

method passes the value to the OSPM driver, and

the OS takes the necessary action.

Figure 1-38 describes this communication graphically.

Figure 1-38. Software implementation of the EC control interface

Shared Memory Map

Some systems have memory regions shared between the embedded

controller and the host system address space. The size of this memory

region is limited and treated as read-only (RO) on the host system

Chapter 1 Spotlight on Future Firmware

113

side. This memory is maintained by the EC to pass various interesting

information such as battery status, thermal sensor data, battery

information, fan speed, LID switch status, etc. A system that doesn’t

support this shared memory needs to send host commands to read that

information.

 Challenges with Closed Source EC Firmware

The firmware that is running as part of the embedded controller is working

at a higher privileged level where unauthorized access won’t be detected

by the security controller running as part of the system firmware or an

OS. Also, if proprietary EC firmware code doesn’t implement Secure Boot

or verified boot, then it’s allowed to run even unsigned and untrusted

images. There have been several vulnerabilities being reported in the past

where the EC can run unsigned firmware, and having a compromised EC

firmware results in a denial-of-service (DoS) attack on the system. To bring

more reliability and efficiency to computing systems and allow visibility

into the most privileged code that is running prior to the host CPU reset,

the industry is promoting an open source and collaborative embedded

controller development using the Zephyr OS.

The next section will provide details about developing EC firmware

using an open source advantage, but prior that, let’s understand the

reference hardware design that enables independent EC development

using a Modular Embedded Control Card (MECC).

 Modular Embedded Controller Card

Typically, the embedded controller chip is soldered onto the motherboard,

and many system firmware updates also ensure the EC firmware is

upgraded. If the platform has detected a bug in the EC firmware boot

code and the system firmware doesn’t provide the provision to update the

EC firmware, it’s impossible to replace the defective EC firmware as it’s

integrated into the motherboard design. To mitigate this problem and have

Chapter 1 Spotlight on Future Firmware

114

an independent, modular EC firmware development that supports various

EC SoC vendors, the MECC card was developed. The host system using

open source EC firmware may take advantage of the MECC specification,

where different EC SoC vendors can develop and validate their solution

through an add-on card rather than creating multiple hardware designs

with a dedicated on-board EC. Figure 1-39 shows the MECC card design

and interfacing with the host system through the MECC connector. The

MECC AIC board design is an independent solution that combines the

processor, memory, ROM, and different I/Os as part of the MECC board,

for example, serial port for debug, SPI Flash, keyboard connector, etc., and

interfacing with the host system is through the MECC (AIC) connector

using the LPC/eSPI interface. Hence, it’s easy to replace the AIC if broken;

just upgrade the EC firmware using an external SPI programmer.

Figure 1-39. MECC AIC interfacing with the host system

Open source embedded controller firmware development using

Zephyr-OS provides a scalable architecture that enables different MECC

cards with different EC SoC vendors. The vendor added Hardware

Chapter 1 Spotlight on Future Firmware

115

Abstraction Layer (HAL) and EC SoC Board Support Package (BSP)

support along with Zephyr RTOS.

 Zephyr-Based EC Firmware

The Zephyr OS is a small-footprint kernel that is designed for use on

resource-constrained and embedded systems. The kernel has support for

cross-architectures and is distributed under the Apache 2.0 license. Zephyr

is an open source project managed by the Linux Foundation. Zephyr

provides a huge set of features.

Threads: Typically, the operations performed by the embedded

controllers are task based, and hence, migrating to Zephyr for embedded

controller firmware development would be effective with scheduling

algorithms provided by Zephyr for creating a multithreaded environment.

The creation of a thread in Zephyr uses a statically defined approach using

K_THREAD_DEFINE. The thread may be scheduled for immediate execution

or a delayed start. Zephyr provides a comprehensive set of thread

scheduling choices that use a time slicing algorithm to achieve a multitask

environment.

• Cooperative time slicing: Each thread should

intermediately release the CPU to permit the other

threads also to execute. It can be achieved using

predefined sleep between tasks or explicitly releasing

the CPU.

• Preemptive time slicing: Use the Zephyr scheduler that

allows other threads to get their chance for execution

without causing a starvation.

The tasks performed by the embedded controller are non-time-critical

tasks; hence, cooperative time slicing is more applicable where each task

would sleep for some predefined amount of the time before becoming

ready to perform the task again.

Chapter 1 Spotlight on Future Firmware

116

Memory: Zephyr allows the static allocation of

memory with a fixed-stack size. It implements

memory protection and prevents the EC stack

from getting overflowed, having access permission

tracking for kernel objects and device drivers.

Provides user-space support using MMU/MPU.

A platform without MMU/MPU support combines

BSP code with a custom kernel to create a

monolithic image where both the BSP and the

kernel code share the same address space.

Resource definition at compile time: Zephyr ensures

all system resources are defined at compile time to

reduce the code size and increase performance.

Security: A dedicated team is responsible for

maintaining and improving the security. Also,

having visibility via the open source development

significantly increases the security.

Device tree: The device tree is used to describe the

hardware. Information from the device tree is used

to perform various device-related operations inside

the BSP and/or application layer.

The embedded controller firmware development using ZephyrOS

is a new and a growing area where the introduction and support of new

protocols and peripherals help to go beyond the traditional I/Os from what

is being available in stand-alone microcontroller units. Figure 1-40 shows

the Zephyr-based EC firmware architecture diagram.

Chapter 1 Spotlight on Future Firmware

117

Figure 1-40. Zephyr-based embedded firmware architecture diagram

The modular and configurable architecture of ZephyrOS-based

embedded controller firmware development is hardware and vendor

agnostic. It allows switching the underlying hardware abstraction layer

(HAL) and drivers based on different EC SoCs, while the middleware and

logic remains intact. To use a different MECC card with different EC SoC

vendors, the developer needs to add its HAL and board support package

(BSP) to the Zephyr EC firmware repository.

Chapter 1 Spotlight on Future Firmware

118

The following table describes the components inside the EC firmware

that are required while performing low-level operations:

Board Board-specific code and configuration details. this includes gpio

map, battery parameters, routines to perform board-specific init.

SoC/vendor-
specific HAL

mCu-specific code that deals with lower-level hardware like

registers and hardware blocks.

Drivers lower-level drivers for uart, gpio, timer, i2C, etc. these drivers

are using a device tree and vendor- specific hal to access the

underlying embedded controller hardware block.

The ZephyrOS layer provides upper-level code that manages the

thread, memory management, I/Os management, etc. This includes

high-level drivers that publish Zephyr APIs to allow the host interface to

access the embedded controller. The host interface defines the hardware

link between the embedded controller and host system (PCH and CPU) to

work on a computing system. This link can be between LPC or eSPI or I2C,

which is the section that covers all the basic applications of EC firmware

on an eSPI-enabled platform.

Power Sequencing

This section describes the application of embedded controller firmware

that handles the platform power sequencing, and at the end of this flow,

the host processor is able to come out from the reset. The embedded

controller firmware follows the host system platform design guideline that

specifies the power sequence and its timings. Any platform state transition

has to pass through this module. These events that trigger platform state

transitions can be power signals that either come from a host system like

ACPI system transitions or are generated by board circuitry like the power

button, AC supply, etc. Refer to the following table that demonstrates

system transitioning from G3 to S0:

Chapter 1 Spotlight on Future Firmware

119

System Transitions Between G3->S0

1. the power good (pwrgD) signal to the embedded controller hardware indicates

when the main power rail voltage is on and stable. the processor part of the

embedded controller will start executing code from the rom. the boot code is used

to download code (user code) from an external flash via the shared flash interface.

the downloaded code must configure the device’s pins according to the platform’s

need. once the device is configured for operation, the user code must de-assert the

system’s resume reset signal (rSmrSt#). any gpio may be selected for rSmrSt#

function. the board designer needs to attach an external pull-down on the gpio

pin being used for the rSmrSt# function; this will ensure that the rSmrSt# pin is

asserted low by default.

2. perform a deep sleep exit handshake, where pCh sends the SuS_warn signal to

the eC and the eC acknowledges by sending the SuS_aCK signal.

3. the eC indicates the pCh using the Batlow signal that there is a valid power

source or enough battery capacity to power up the system.

4. Slp_Sx (where x is based on the supported sleep state of the host system)

signals from pCh to the eC indicate that the host system is transiting from the sleep

state as per the platform guide.

5. wait for all_SYS_pwrgD, the all-system power good (all_SYS_pwrgD) input

generated from the board circuitry indicates to the eC that the SoC power rails are

stable.

6. Based on this, the embedded controller will generate the pwroK signal.

7. pCh de-asserts pltrSt# after pwroK is stable. the pltrSt# is the main

platform reset to other components.

8. the processor will begin fetching code from the Spi Flash via Spi interface.

Chapter 1 Spotlight on Future Firmware

120

Figure 1-41 shows the graphical representation of the system state

transition between the embedded controller and host system.

Figure 1-41. Power sequencing with Zephyr- based EC firmware

Peripheral Management

This section describes the embedded controller managing the human

interface device, which mainly handles buttons and switches attached to

the motherboard.

Button Array Devices

All sorts of buttons that are present on the motherboard and need human

interaction are managed by the embedded controller. For example, the

Power Button is the input to EC, which is default-driven high with a pull-up.

This signal goes low upon pressing the power button and triggers an

interrupt. Apart from that, Volume up/down buttons, Home button, etc., are

also being managed by this module.

Switches

This module is also responsible for tracking the state of laptop lid switches

and other modules like the screen rotation lock.

The main job of this module is to deal with the undesirable effect any

mechanical button/switch has when it strikes together (either pressed and

Chapter 1 Spotlight on Future Firmware

121

released or open and closed), causing electrical rebound before settling

down after the electrical transient time. Mechanical switch debouncing

is implemented using cooperative threading to track the short and

long presses of all buttons registered within the system. It also sends a

notification to the host. Callbacks per button/switch are registered within

the GPIO driver to track state transitions for button and switches. See

Figure 1-42.

Figure 1-42. Peripheral management with Zephyr-based EC firmware

Facts the embedded controller can be used to detect the docking
status of the platform, whether it is in a docking station or not. Based
on this status, the eC can perform additional tasks such as switching
the system power source to the dock, routing signals from onboard
interfaces to the dock, and reporting the docking status to the
operating system.

Chapter 1 Spotlight on Future Firmware

122

System Management Controller

The section describes the role of the embedded controller as a system

management controller, which is used to manage the following items.

Thermal Management

The EC uses the I2C/SMBUS interface to read the platform sensor data,

and based on the criticality of the platform state, the EC may have PWM

interfaces that can be used to control system fans.

Power Monitoring

The embedded controller ADC signal can be used to monitor the voltage,

and based on the usage of the sense resistor, it can also monitor the

current consumption of specific power rails. This information could be

useful to monitor the battery charging and inform the user or system

administrator about any potential problematic power supply condition or

detection of a bad charger.

Battery Management

The EC can be used to control the charging of the battery, switch between

the battery and AC adapter as the active power source, or monitor the

various battery status metrics such as temperature, charging level and

battery health, etc.

ACPI Host Interface

The earlier section about “Embedded Controller Interface” provided the

required details to understand the host CPU and EC communication

using the ACPI host interface. The EC is capable of providing an ACPI-

compliant operating system with status and notifications regarding power

Chapter 1 Spotlight on Future Firmware

123

management events. Also, it is capable of generating wake events to bring

the system out from the low-power states.

The SMC host module is implemented as a cooperative thread that

registers multiple callbacks within different modules to track events in the

system. See Figure 1-43.

Figure 1-43. SMC with Zephyr-based EC firmware

Keyboard Controller

Typically, the EC is also referred to as a keyboard system controller

(KSC), as it allows AT-compatible and PS/2-compatible support for the

keyboard and mice via reads/writes to I/O ports 0x60 and 0x64. The main

responsibility of this module is to inform the CPU when a key is pressed or

released. It also supports auxiliary devices such as a mouse. On modern

computing systems, embedded controller chips have implemented

support for 8,042 commands, which means the EC can receive 8,042

commands from either the system firmware or the PS/2 operating system

driver. Figure 1-44 shows the implementation aspect of an embedded

controller kbchost application, where the EC firmware application can

pass the received command from the operating system driver to the

Zephyr PS/2 driver, which performs PS/2 communication with a mouse

Chapter 1 Spotlight on Future Firmware

124

and/or keyboard. Alternatively, the EC firmware can also receive the

command and process it prior to sending a response to the OS driver.

For example, kbchost gets the command 0xD4 (Send to Mouse) at KBC

Command/Status Register 0x64 that indicates the destination device; then

it sends a command 0xF4 (Enable) through the KBC Input/Output Buffer

Register 0x60. When the host expects to receive any response, the data

arrives through port 0x60.

Figure 1-44. KBC with Zephyr-based EC firmware

Keyboard Scan Matrix

All keyboards have their keys arranged into a matrix of rows and columns;

this is known as the keyboard matrix. Because of the number of signals

required to represent those rows and columns, the external keyboard uses

an on- board keyboard controller (KSC). It continuously scans the state

of the whole grid; a circuit in the grid is closed when a key is pressed, and

this is eventually sensed by the firmware running in the EC. Once the row

and column have been determined, the EC maps the grid coordinates to a

Chapter 1 Spotlight on Future Firmware

125

scan code, which is sent back to the EC firmware kbchost application and

further sent the data to OS PS/2 driver as the eSPI message. Figure 1-45

shows the implementation of the keyboard scan matrix as part of the

Zephyr-based OS.

This implementation allowed ODM/OEMs to have specific hotkeys

as part of the laptop keyboard layout, which is not supported by the

international keyboard standard, for example: change screen brightness,

enable/disable wireless networking, control audio volume, etc.

To summarize, the embedded controller is a special microcontroller

that is part of the majority of mobile computing systems. The firmware

that is running on the EC chip is operating at a much higher privilege level,

which does various operations that are not possible to perform by even an

operating system. This firmware started operating since platform power

on and remains active even if the system is at a power-off state; hence,

it’s important to ensure the visibility of operations that are running part

Figure 1-45. Managing a KeyScan event with Zephyr-based EC
firmware

Chapter 1 Spotlight on Future Firmware

126

of the EC firmware. The EC firmware project is being developed with the

open source Zephyr OS that has provided visibility into the EC firmware

operations. The introduction of Zephyr OS makes EC development easy at

the EC vendors and OEMs sides while supporting different EC SoC chips

with the same host system using the MECC card.

 Summary
This chapter provided an opportunity to understand the different types

of firmware that exist and execute on a computing system. Typically, they

are categorized as system firmware, device firmware, and manageability

firmware. All these types of firmware are running at a higher privilege level

compared to the kernel. In this chapter, those privileged levels are being

specified as “minus” rings since any vulnerability existing in these layers is

tough for any high-level security controller to detect. Hence, this chapter

highlighted the need for an open source approach while developing this

firmware in the future. This would finally help to restore the trust in the

platform and also would provide visibility into the most privileged level

firmware, which was not done before.

This chapter proposed two working principles while developing system

firmware in the future for embedded systems: hybrid system firmware,

where a portion of silicon vendor code is binary and communication with

open source firmware is using a standard specification-defined interface,

and a true open source system firmware development on an open

hardware specification using a modern system programming language

such as Rust. Appendix A provides the reasoning behind migrating

the system firmware using Rust, an open source system programming

language.

Chapter 1 Spotlight on Future Firmware

127

Additionally, this chapter specified the well-known mechanism for

designing and developing the device firmware using closed source models

like option ROM (OpROM). The legacy implementation of the OpROM

might increase the platform attack surface. Hence, developing modern

OpROM using the open source EDKII source code and toolchain helps to

get the initial visibility into the device firmware space, but the ideal goal

would be to use the open source firmware model even for developing the

device-specific firmware.

The remote management for server platforms and enterprise systems

demands out-of-band (OOB) access into the system using a special

manageability controller to perform certain tasks when the host system is

not available or demands any maintenance. The firmware that is running

on these MCUs are at the highest privilege level in the ring and hence

always pose the security risk if an intruder had access into the remote

system. This chapter provided a brief overview of system architecture of

the two widely used microcontrollers, BMC and EC, on the computing

system. This will help developers perform a migration to open source

firmware development for these manageability controllers in the future.

The goal of this chapter was to explain why firmware architecture is

expected to evolve in the future, and it’s fairly possible that the majority of

firmware development will migrate to open source. Hence, it’s important

that developers understand the industry’s need and prepare themselves

for the future.

Chapter 6 represented some innovation in system firmware design and

development using an open source firmware approach that addresses the

ongoing concerns with extensible firmware architecture that increases the

firmware boundary and inherits responsibility while booting the platform.

Chapter 1 Spotlight on Future Firmware

129

CHAPTER 2

Tools
“If the only tool you have is a hammer, it’s hard to eat
spaghetti.”

—David Allen

Looking back at history, tools have been the impetus for the evolution

of the human race. Starting from the Stone Age through the Iron

Age and to the modern computing age, tools have eased the work

that humans have to do. Having the right tools for developing a boot

firmware product is absolutely necessary to ease the development

effort as well, provide a flexible interface for configuration, and offer

seamless upgradability. This chapter focuses on the details of the

various types of tools that a system developer should be equipped with

for creating their own boot firmware.

The system firmware development journey includes various tools

from its creation until deployment, as shown in Figure 2-1. This book

is committed to providing detailed knowledge about various tooling

requirements for each phase to prepare developers to work with the

prerequisite software development kits (SDKs).

Typically, to get started with firmware development, a developer has to

be equipped with these tools:

• Integrated development environment: An integrated

development environment (IDE) is software that helps

developers ease their development process. It typically is a

© Subrata Banik and Vincent Zimmer 2022
S. Banik and V. Zimmer, Firmware Development,
https://doi.org/10.1007/978-1-4842-7974-8_2

https://doi.org/10.1007/978-1-4842-7974-8_2

130

source code editor that provides some basic functionality

such as the ability to create new files, search files, replace

a string in a file, and more. Based on developers’ needs,

there are various types of IDEs available, from basic ones

such as the vim editor to advanced IDEs such as Eclipse,

for firmware development.

Figure 2-1. System firmware development model

Chapter 2 tools

131

• Infrastructure tools: Chapter 3 provides ample details

about the usage of infrastructure tools in system

firmware development. Hence, this chapter will refrain

from discussing the topic.

• Debugging tools: Refer to Chapter 4 for a detailed

overview of the debug methodology and debug tools

usage on cross-architecture platforms. That chapter

highlights the different types of tools used in system

firmware development.

• Build tools (compiler and stitching tools): Build tools

are the first step toward creating a firmware image for

embedded systems. This process involves taking source

code as input and generating binary files as output. The

next step combines all the binaries and produces the

final firmware image. This process is highly dependent

on the chip architecture, firmware architecture, and

technology being used to create the system firmware.

• Configuration tools: Configurability is a fundamental

right for system integrators and validation engineers

working on an embedded system. Relying on the

development engineers to alter the source code to

allow configuration and re-generate firmware images

is not a scaled solution. This approach is a bottleneck

for innovation. For example, it limits the scope for

performing boundary testing with a wide range of

data inputs. Even not a sustained model when the

goal is to enable more ODM/OEM platforms with

reduced development cost. Configuration tools allow

developers to generate firmware images based on

SoC and board- level configuration changes without

rebuilding the system firmware image.

Chapter 2 tools

132

• Flashing tools: The most important step to bring an

embedded system to life is programming the flash

parts. The purpose of flashing tools is to ensure

the firmware image is correctly burned into the

embedded system boot devices. The flashing process

and mechanisms vary a lot, based on the underlying

hardware design, target operating system, firmware

architecture, technology being used, etc. A flashing

tool might have a different interface and mechanism

to consider based on the product lifecycle. The tooling

process is different on the development side, factory

side, and end-user side. Another consideration is that

some firmware updates are over the air (OTA), meaning

accomplished via a network.

The purpose of this chapter is to limit the discussion to the three major

tooling needs (build, configuration, and flashing tools) while creating

the system firmware and focus on the tools architecture across different

system firmwares.

 Build Tools
The most effective way to understand a system firmware architecture is

by understanding its building blocks. Different firmware systems have

much in common: they mostly use C, with some assembly, for example.

The differentiating factors among these different system firmware are the

underlying build tools.

This section provides a detailed overview of the build tools and

processes of two popular system firmware products for embedded

systems: EDKII and coreboot. Typically, at a high level, all system firmware

packages consist of the same structures, as specified in Figure 2-2.

Chapter 2 tools

133

• Refer to the Open Source EDKII project GitHub

repository:

• https://github.com/tianocore/edk2

• Refer to the open source coreboot project GitHub

repository:

• https://github.com/coreboot/coreboot

The BaseTools or Util directory consists of build tool binaries,

or source code that needs to be compiled, prior to starting to build

the package. The package does not have a dependency on the build

environment. The package might consist of two types of files.

• Source code files: Files get compiled to generate object

files or binaries that need further processing.

• Flash layout files: Files are processed to combine

various binaries to create the final firmware image.

The build process includes three main phases.

 1. Set up the environment.

 2. Build the package components.

 3. Package the components to create the final

firmware image.

Chapter 2 tools

https://github.com/tianocore/edk2
https://github.com/coreboot/coreboot

134

Figure 2-2. High-level system firmware package structure

 EDKII Build Tools and Process
EDKII is an open source firmware development project utilizing the UEFI

and PI specification. EDKII is intended to improve the build experience

compared to its predecessor, the EDK platform. EDKII adopts modern,

feature-rich tools like Python for building, providing flexibility for

developers while choosing correct toolchains using intermediate text

files and relying on the C source code to generate tool binaries. Figure 2-3

describes the control flow of an EDKII build.

Chapter 2 tools

135

Figure 2-3. EDKII build tools and build process at a high level

Chapter 2 tools

136

Prior to discussing the build process and understanding how

the underlying build tools are getting used, let’s first understand the

prerequisites to initiate the build process.

 Build Environment Setup

Several build environments must be prepared prior to development for

EKDII. Some of these tools are dependent on host machines and host

operating systems.

Operating Systems Compiler Tool Chains

Microsoft Windows Visual studio C compiler and Windows Driver Kit (WDK)

linux Native GCC Installation 4.4 onward

Some other build tools may also be required, depending on the source

package, as part of system firmware development needs, in addition to the

previous list.

Additional Compilers Details

Nasm Nasm is required for the eDKII build if the source package

has Intel- style assembly code.

iasl this is needed to compile aCpI source language (asl)

and generate .aml files.

python eDKII has adopted python for several build-related tools;

hence, developers are expected to install python to

run python-based tools from source. examples: Build,

GenFds, trim, etc.

Chapter 2 tools

137

The EDKII prebuild phase ensures that the required basic

environment variables are set, by executing script files named edksetup.

bat or edksetup.sh, depending on the host system. Here is a list of

environmental variables that the EDKII build process depends on:

Environment Variables Description

WORKSPACE the first variable to be set is WORKSPACE. this variable

points to the root directory of an eDKII directory tree.

More than one development tree can exist, and this

environment variable is used to identify the current

working directory tree.

PACKAGES_PATH this variable points out all possible required

repositories for building the target project. For example,

for building MinPlatformPkg, the developer needs to

point to these three repositories:

• Edk2

• Edk2Platforms/Platform/Intel

• Edk2Platforms/Silicon/Intel

EDK_TOOLS_PATH this points to the BaseTools directory belonging to

the eDKII package. It contains binaries as mentioned in

the EDK_TOOLS_BIN environment variable.

EDK_TOOLS_BIN this is the path to point out build tool binaries. this

depends on the operating system.

CONF_PATH this is the variable to point out tool metadata files.

The CONF_PATH environment variable is used to point at the

configuration files. The configuration file tools_def.txt is used to provide

compiler path information, assembler information, linker information,

etc., while another file, target.txt, is used to describe the build process.

Chapter 2 tools

138

ACTIVE_PLATFORM path to the .dsc file that represents the target embedded

system

TARGET Characteristics of system firmware like DEBUG or RELEASE

TARGET_ARCH Underlying soC or CpU architecture of target hardware

TOOL_CHAIN_TAG to specify the compiler name example: GCC5 or Vs2015x86

BUILD_RULE_CONF path to the build rule file (build_rule.txt) that specifies

the build process, usage of build tools based input and output

file types and specifies the type of cross-architecture platform.

At this stage, the EDKII prebuild is done with all prerequisites except

the build tools, which is required to start the build process.

 Build Binaries

The EDKII package consists of both the package source code and tools

source code, separately. EDKII has introduced two sets of tools source

code, as shown in the following tree structure:

|-- BaseTools

| |-- Bin

| |-- gcc

| |-- Scripts

| |-- Source

| | |-- C

| | | |-- EfiRom

| | | |-- GenFfs

| | | |-- GenFv

| | | |-- GenFw

| | | |-- GenSec

| | | |-- GenVtf

| | | |-- Makefiles

Chapter 2 tools

139

| | | |-- Split

| | | |-- TianoCompress

| | | |-- VfrCompile

| | | `-- VolInfo

| | `-- Python

| | |-- AutoGen

| | |-- build

| | |-- GenFds

| | |-- Trim

|-- Conf

|-- CryptoPkg

|-- EdkSetupFsp.sh

|-- IntelFsp2Pkg

|-- MdeModulePkg

|-- MdePkg

|-- PcAtChipsetPkg

`-- UefiCpuPkg

Developers to build the BaseTools directory at least once to create

build tool executables and update EDK_TOOLS_BIN before compiling the

target platform package (.dsc) to generate the final Flash Descriptor

(FD) file.

Depending on the host machine, perform the following command to

generate executable Build Tools:

For Windows: nmake all

For Linux: make -C Edk2/BaseTools

All the required utilities will be copied into the path specified by

the EDK_TOOLS_BIN environment variable. This is a manual process

and expected to execute once, unless the developer cleans the entire

workspace.

The build_rule.txt file is intended to provide detailed input and the

expected outcome from each build tool taking part in the build process.

Chapter 2 tools

140

Let’s look at a few widely used build tools in detail and their usage

prior to discussing the build process.

Utilities Description

build.py the main interface to complete the entire build process. this tool

is written in python. the build calls the autoGen process; then it

calls make process, and finally the ImageGen process to create

the final FD binary.

AutoGen.py another key tool in the build process; this gets called by the build

command. this tool is written in python to work as a parsing tool

to parse metadata files (INF, DsC, DeC, FDF) to autogenerate C

source code files, makefiles per module, and the master makefile

for the project with the help of other sets of libraries such as the

following:

GenC Library: Used by AutoGen.py to create AutoGen.h and

AutoGen.c after parsing the metadata files to resolve pCDs,

GUIDs, etc.

GenMake Library: Used to create a makefile for each module

and the top-level makefiles that can be further processed by

nmake or gmake or cmake

GenFw.exe part of the C source code tool. responsible for creating UeFI

Firmware Image (.efi) files based on the module types listed in

the INF files as part of each module.

GenSec.exe Used to generate a valid EFI_SECTION type based on INF files.

For example, as part of the .efi binary, each module also has

several sections such as name sections, GUIDed sections, version

sections, etc., based on associated fields in the INF file.

(continued)

Chapter 2 tools

141

Utilities Description

GenFfs.exe part of ImageGen process to create FFs files based on FDF to

take part into firmware volume (FV). one can make use of the

GenFds tool as well to create the FFs file.

GenFds.py to process the files generated as part of the build binary and

associated binary files that are listed in the FDF and DsC files to

be part of the final Flash Device (FD) image.

In addition to the previous list, there are other useful utilities that are

used for some specific purposes such as compression, generating an EFI

option ROM image from the .efi file, creating a configuration file and/or

patching a binary module, and creating an FD image.

 Build Process

Figure 2-3 already provided the high-level build process flow for the EDKII

platform, where a build command has triggered the build process. The

entire build process can be divided into three major stages.

• AutoGen process

• Make process

• ImageGen process

Every build process listed here involves certain build tools (described

in earlier sections), driven by a fixed set of input files, that generate output

files, which are used as input to the next build process. This process

continues until a final firmware file (a so-called FD file) is generated.

Chapter 2 tools

142

AutoGen Process

This process was introduced in the EDKII build infrastructure. The

major drawback that EDK had was each module needed to create its

own makefile (similar to the C programming logic) to link the required

libraries, GUID, etc., prior to compiling a module. It is difficult for a new

developer who is transitioning into an EDK-based framework for firmware

development.

EDKII has introduced this concept of AutoGen to parse the metadata

files as part of the target package and/or individual module to generate

some C source code files, the makefiles for each module, and even the

master makefile for the target project.

Parsing Tools: This process has involved more than one tool and

associated libraries. All tools that are part of this build process are written

in Python. Refer to the build tools discussion for more details.

• AutoGen.py: This tool is used to parse the metadata

files with the help of another two libraries, GenC and

GenMake, to create AutoGen.c, AutoGen.h, and other

makefiles.

Input Files: At a high level, the parsing tools takes the following files

as input:

File Name Description

.dsc platform Description each package has one DsC file to describe the

build rules, libraries, and components (INF) being

used.

a platform build process starts with this file.

.dec package Declaration Declares the interfaces that are being used in that

package.
(continued)

Chapter 2 tools

143

File Name Description

.inf Module Definition each module has one INF file to define the

interface, source code, libraries, usage of GUID,

etc.

.fdf Flash Description File File in each package that provides the flash

layout and associated firmware volumes. each

component that is described in this file will take

part in final binary creation.

Output Files: As mentioned earlier, the purpose of the parsing tool is

to ease the development effort; hence, the output binaries that are part of

this process are as follows:

• Top-level makefile: This is the makefile for the entire

package that resolves all libraries, GUIDs, and any

global definitions as part of the package.

• Makefiles per module: A C-based module can’t really

compile without having a dedicated makefile. The

parsing tool will generate a makefile for each module

based on the INF file, after resolving the required

dependencies using other packages.

• Autogenerated C source code: The source code as

mentioned in the INF files is mostly written in C, where

it relies on C-based data structures. With the metadata-

based implementation in EDKII, it needs a parser to

create an autogenerated AutoGen.h or .AutoGen.C file

based on the need to provide macro definitions and

resolve external symbols for the next build process

(which is the make process).

Chapter 2 tools

144

Make Process

The make process is not exceptional from any standard C-based

compilation process to generate binary files that are further processed

by special build tools to create EFI firmware image type files. Figure 2-4

describes the make process control flow:

Build binary: This process involves standard

C-compilers, assemblers, static linkers, and dynamic

linkers to generate PE/PE32+/COFF images from

component or module types listed in the INF files.

Additionally, the GenFw tool is used to generate EFI

firmware image files.

Chapter 2 tools

145

Figure 2-4. High-level make process structure

Chapter 2 tools

146

Input files: The make process takes two types of files

as inputs. The source code belongs to the target

and associated packages (C source, headers, ASM

source and includes, ACPI and ASL files, etc.) and

the autogenerated C source code headers and

makefiles.

Output files: The purpose of the make process is to

generate EFI file images that can be further used

during the ImageGen process. But based on the

input files, it can also generate .acpi, .aml, and

.bin binaries. Figure 2-4 has provided a detailed

control flow for generating EFI files based on

input C source code. This process involves several

intermediate steps, as shown here:

 1. The standard C-based compiler has compiled

the source code to generate .obj files.

 2. .obj files have been given as input to the static

linker to generate static library files (.lib),

which further process into dynamic library files

(.dll) with the help of a dynamic linker.

 3. Finally, the GenFw tool as part of the $(make)

phase converts the .dll into an EFI_SECTION

type. The EFI file format is compatible with the

PE32/PE32+/COFF format.

ImageGen Process

This phase is responsible for taking the EFI format files generated as part of

the make process and parsing the package metadata files to verify whether

all those EFI file types are intended to be part of the final flash image.

Chapter 2 tools

147

This process can also take binary files as input, which is not part of the target

DSC file or not the outcome of the build process while creating the final

firmware image. Figure 2-5 describes the ImageGen process control flow.

Figure 2-5. High-level ImageGen structure

Build binary: Once the EFI section files have been

created in the previous step, they need to be placed

within an FFS file. GenFfs is the build tool that

generates FFS files after combining those EFI_

SECTION type binaries with the FFS header. GenFds

is used to construct the final firmware binary.

In addition, there might be a few modules and

components that are part of the DSC files that are

not meant to be part of a final firmware binary like

Option ROM (OpROM). The EfiRom tool builds an

option ROM image from an EFI file.

Chapter 2 tools

148

Input files: At this stage, all components or modules

that are part of the target platform package DSC file

are now converted into build binaries. Out of those

build binaries, module types with UEFI applications

and OpROM are excluded from being part of the

final Flash Descriptor (FD) creation process. This

final build process depends on the FDF file to create

the flash layout.

Output files: The FDF file section provides an

overview of generating one or more firmware

volumes (FVs). The FV section describes how to

combine FFS files to create FV files. Multiple FV

files are combined to create the final firmware

image as a flash device (FD). FD tokens provide the

BaseAddress, Size, ErasePolarity, BlockSize, and

NumBlocks fields.

BaseAddress $(FLASH_BASE) | gSiPkgTokenSpaceGuid.

PcdBiosAreaBaseAddress

Size $(FLASH_SIZE) | gSiPkgTokenSpaceGuid.

PcdBiosSize

ErasePolarity 1

BlockSize $(FLASH_BLOCK_SIZE)

NumBlocks $(FLASH_NUM_BLOCKS)

At the end of this phase, the final firmware binary at a size of

$(FLASH_SIZE) is ready to use the EDKII framework to flash on the target

embedded system.

Chapter 2 tools

149

This section provided an overview of the build system for an EDKII-

based system firmware development. The next section will focus on

the build tool and its creation process using another system firmware

architecture, known as coreboot.

 coreboot Build Tools and Process
coreboot was developed based on the open source firmware development

principle that relies more on C-standard build tools and build

environments to generate the final firmware binary. This process doesn’t

require high-level build tools and is much simpler compared to the EDKII

build process described in earlier sections. Figure 2-6 shows the coreboot

high-level build process.

Chapter 2 tools

150

Figure 2-6. High-level coreboot build tools and build process

Chapter 2 tools

151

For a better understanding and to be able to compare the build process

with EDKII, this section presents the coreboot build flow almost in the

same manner as was presented in the previous section.

 Build Environment Setup

This section provides the prerequisites to download the coreboot source

code, which includes both the package source code and the source code

for build tools. Additionally, it provides details about the compiler based

on the host systems and environment variables that are expected to be set

based on the target embedded system architecture.

The coreboot build process is based on GNU make; hence, developers

need to have a Linux and UNIX-equivalent operating system on the host

side with native GCC installed. GCC is the compiler for building coreboot

(alternatively, one can also use LLVM/clang to build coreboot).

Some other build tools may also be required depending on the source

package as part of the system firmware development needs in addition to

the previous list:

Additional Compilers Details

iasl this compiles aCpI source language (asl) and generate

.aml files.

Flex the GNU flex tool is used to parse the device tree field as

it works as a lexical parser.

Bison the GNU bison tool works as a grammar parser for device

tree files.

The coreboot prebuild phase is to ensure that all associated coreboot

project-related files are also getting synced from their respective

repositories prior to building the target project or mainboard. These

associated projects are maintained separately as part of Git submodules

Chapter 2 tools

152

and checked out automatically after fresh coreboot code sync using git

submodule update --init --checkout. The reason for maintaining these

submodules separately is because they might be additional firmware

projects by themselves like vboot or might be some SoC-specific closed

source binary blobs like FSP, CSE, or PSP, etc., used to generate the final

firmware binary.

The prebuild phase also sets up the required basic environment

variables.

Here is a list of environmental variables that the coreboot build process

is dependent on:

Environment Variables Description

FIRMWARE_ARCH this variable points to the target hardware

architecture for which these files are getting

compiled. Values can be used as x86, arm, etc.

KCONFIG_CONFIG this variable points to the input config file. typically,

this is referred to as $(DOTCONFIG).

KCONFIG_STRICT the value assigned to this variable is build/util/

kconfig/conf --oldconfig src/Kconfig.

Define to enable warning as errors.

KCONFIG_AUTOHEADER this variable points to the path and filename of the

auto.conf file.

The tool chain configuration file (toolchain.inc) is meant to provide

paths for compiler, assembler, and linkers based on the target hardware

architecture.

At this stage, the coreboot prebuild has been done with all

prerequisites except the build tools, which are required to start the build

process.

Chapter 2 tools

153

 Build Binaries

The coreboot package consists of both source code and tools source code

separately, as shown in the following tree structure:

|-- 3rdparty

|-- configs

|-- Documentation

|-- payloads

|-- src

|-- util

| |-- abuild

| |-- acpi

| |-- amdfwtool

| |-- amdtools

| |-- apcb

| |-- cbfstool

| |-- cbmem

| |-- crossgcc

| |-- futility

| |-- ifdtool

| |-- kconfig

| |-- sconfig

To start the final firmware binary generation process based on the

target hardware, coreboot needs to build the cross-compiler, such as x86,

arm, risc v, etc. For coreboot, the entire build process is designed based on

GNU make; hence, running a make help command would list the possible

tool chain options.

To build the coreboot for all supported architectures, developers can

use the following command:

make crossgcc CPUS=n [n = number of CPU cores to use.]

Chapter 2 tools

154

Additionally, developers need to build other tools as per package

source support or build flow needs.

Let’s understand a few widely used build tools/utilities in detail and

their usage prior to discussing the build process.

Kconfig

Kconfig is a widely used tool in Linux kernel projects to allow configuration

mechanisms by selecting the required modules based on developer

input. Similar to a coreboot project, Kconfig is used to allow developers to

select the SoC feature or platform feature to create an autogenerated file

that can be given to the make process for further processing. The Kconfig

utility in coreboot gets built from the source code in util/kconfig.

The Kconfig language is designed to describe a series of menu entries,

and each Kconfig line starts with keywords like config, menuconfig,

choice/endchoice, menu/endmenu, if/endif, etc. All Kconfig symbols in

the coreboot project are referred to with the CONFIG_ prefix. Because of this

advantage, the Kconfig language can be used easily to enable or disable

any feature at build time. While building the coreboot project, developers

are mostly familiar with the following modes to use Kconfig:

• config: Text mode configuration; asks developer about

each configuration option

• menuconfig: Menu-driven configuration tool (added

from Linux 2.5.45) still in Text mode

Output: After parsing all the source files, the Kconfig tool generates

a HEADER file with a list of values inside build/auto.conf, which will be

further used by the source code and makefiles of the project.

Chapter 2 tools

155

Sconfig

The coreboot device tree is one of the most important concepts in the

coreboot project. The device tree is designed to represent the platform

hardware device structure in the form of a device node that can be the

bridge, the underlying bus architecture, and then finally the endpoint

device. Sconfig is the tool that is used to compile the device tree files in a

coreboot project to generate the static device configuration. The Sconfig

utility is built from the source code inside util/sconfig. The Sconfig tool

is internally using the Lex and Yacc tools to parse device tree files to create

C source code, which can be further used by C-based compilers.

• Lex: The GNU flex tool is used as a lexical analysis tool

that can parse the .cb file to identify specific text strings

such as chip, register, device, pci, on, off, domain,

cpu_cluster, irq, etc.

• Yacc: This is a grammar parser. The GNU bison tool is

used to provide this functionality. The output of the

flex tool is used as input for this tool to understand

what action to take when a token is being identified.

Examples: for Interrupts INT[A-D], for decimals [0-9.]+,

for hexadecimal 0x[0-9 a-f A-F.]+, etc.

Output: The main goal of Sconfig is to convert the mainboard (and

SoC if any) device tree files to create static C source and header files. It

takes a few steps to generate desired output files.

 1. util/sconfig/lex.yy.c_shipped is converted to

lex.yy.c as a source file.

 2. YACC takes lex.yy.c as input and creates the

sconfig.tab.c and sconfig.tab.h files that

contain the macros for the tokens.

Chapter 2 tools

156

 3. The Sconfig utility is generated from the combined

output from lex and YACC.

 4. Finally, the Sconfig utility is used to generate

static.c, static.h, and static_fw_config.h files.

cbfstool

cbfstool is a utility for managing the coreboot file system (CBFS)

components during the final firmware image (ROM) generation process.

The basic operations that cbfstool supports are add and remove modules

into or from ROM images. For the platform using SPINOR as a boot device,

one also needs to be aware that SPINOR memory is getting mapped into

system runtime memory. Module relocation is not an option for early

coreboot modules or .elf binaries in absence of physical memory at

reset on x86 platforms. Thus, cbfstool needs to take care of two types of

modules.

• eXecute-In-Place (XIP): cbfs components marked

as --xip will execute from the address where they’ve

been mapped in SPINOR. Examples: verstage, FSP-M

binary. To support XIP components with a higher

SPINOR (32MB), cbfs has introduced concepts called

extended window and extended window size that are

mapped anywhere outside (4GB to 16MB) the system

memory range.

• Position-independent modules: Modules can be

relocated anywhere in physical memory after it’s being

available. The raw binaries like data or configuration

files also belong to this category.

Chapter 2 tools

157

There could be more than one cbfs inside the coreboot final binary

based on project design. For example, on Chrome OS projects there are

three CBFSs per image: COREBOOT, FW_MAIN_A, and FW_MAIN_B.

cbfstool is built using the coreboot source code inside util/cbfstool.

Inside the cbfstool directory there is source code to create other binaries as

follows:

fmaptool: This is the Flashmap Descriptor language

and compiler. It’s a tool that is able to parse the

textual representation of an .fmd file and describe

the layout of the flash chips that might contain more

than one CBFS. This tool creates an intermediate file

called fmap_config.h with the start and size of each

component that would like to be part of fmap blobs.

The final output of this tool is fmap.fmap.

rmodtool: This is another tool that is part of cbfstool,

which is intended to parse and convert ELF type

files to rmodules. For .elf files as part of the

coreboot project, those that are supposed to get

executed after the physical memory is initialized

and not using SPI mapped memory, they are using

rmodtool to generate position-independent code

and data blocks.

Chapter 2 tools

158

In addition to the generic build tools, there are few important SoC

vendor-specific tools that are used to generate the final firmware binary or

perform key platform initialization or reset operation as follows:

Utility Description

ifdtool Intel Flash Descriptor (IFD), an open source tool that is used on

the Intel platform to stitch boot-critical binaries (referred to as

SI_ALL in .fmd) like Intel Me, Gbe, eC, and Flash Descriptor

along with coreboot BIos region, referred as SI_BIOS in the

.fmd file. Developers can use this tool to override the Flash

Descriptor fields as well as part of the manufacturing flow.

apcb aMD platform security processor (psp) Control Block tools.

this tool is capable of patching an existing apCB binary into

the psp blob. a part of this tool (apcb_edit.py) is allowed to

patch the aMD psp Customization Block (apCB). a binary has

been integrated into the psp to provide the spD information

and perform the required GpIo programming to select and load

the right spD.

amdfwtool this tool is used to inject various images needed by the psp to

complete the reset flow. this tool takes image name, size, and

intended location in the firmware structure. the output of this

tool is amdfw.rom, which holds headers, pointers, and added

firmware images.

amdcompress a utility to generate a compressed BIos image for aMD Family

17h. this compressed image is added into psp’s amdfw.

rom binary. the modern aMD system has the psp, which is

able to bring up DraM prior to x86 reset; hence, the psp

decompresses (the psp has support for zlib engine) the BIos

image into the DraM and starts execution.

Chapter 2 tools

159

 Build Process

Figure 2-6 has already provided the high-level build process flow for the

coreboot platform where the GNU make command has initiated the build

process. From opening up the terminal on the host system until the final

firmware (.ROM) file generation process, the entire build process can be

divided into three major stages.

• AutoGen process

• Make process

• ImageGen process

Every build process listed here involves picking up the correct build

tools (described in earlier sections) and having a fixed set of input files,

and the target is to generate the output files that can be further worked

as input for the next builder script. This process continues unless a final

firmware file is generated.

AutoGen Process

This process involves parsing the Kconfig source language files (.kconfig)

and package device tree files (.cb) for generating two types of files.

• Autogenerated C header that holds the value of lists of

Kconfig being used on the project package (CONFIG_*).

The auto.conf header file is the outcome of parsing the

Kconfig file by the Kconfig build tool.

• Static C source and header files are being generated

as part of this process by the Sconfig tool. These files

are getting used further to provide the hardware

configuration snapshot to the system firmware

during boot.

Chapter 2 tools

160

File Name Description

*.CB Device tree

Files

each package should have at least one devicetree.

cb file, which allows for the board-level configuration

along with providing the snapshot of the CpU and pCI bus

endpoint devices. at runtime this snapshot is being used to

enable/disable the hardware interface or initialize a device.

Make Process

The top-level makefile for the project and all the package makefiles

are used in the make process. The input for the make process includes

autogenerated C source and headers from the previous stage; coreboot

provides assembly and C source code per stage such as bootblock,

romstage, postcar, ramstage, and SMM. The coreboot build process is

flexible enough to make any boot stage optional. For example, if the

system firmware design doesn’t need to have a dedicated ramstage as

a stage for loading the payload, then coreboot can generate the final

ROM image without compiling files for ramstage. These coreboot stages

are independent enough in this build process to generate the ELF

file after using the FIRMWARE_ARCH-specific compiler, assemblers, and

linkers.

On the x86 platform where SPINOR is being used as a boot device

and in absence of physical memory, it needs to ensure that the bootblock

is able to patch at the reset-vector where coreboot is able to execute the

bootblock instruction upon hitting CPU reset. In addition, there are a few

stages (.ELF) that would like to load as a position-independent binary;

hence, there is a need to use rmodtool to generate a special .rmod binary

for stages that are typically getting executed after DRAM is initialized.

Chapter 2 tools

161

ACPI modules are also getting compiled using the iASL compiler and

generated in this process. The fmap tool is used in this process to parse the

FMD file to create a flash descriptor file with the names of possible CBFSs.

File Name Description

.fmd Flashmap File each board package is equipped with one .fmd file to

provide the description about flash layout. this .fmd file

might consist of more than one region (SI_ME, SI_EC,

etc.) in addition to the BIos region, specified as SI_BIOS.

Based on the project requirement, this FMD file might

have more than one CBFs as well.

ImageGen Process

This phase is responsible for creating the final firmware image (ROM) after

adding all those build binaries from the previous stage into the CBFS.

This process basically divided into two phases:

• Create CBFSs: The coreboot build process relies on the

cbfstool build to add the .elf and .bin binaries into

sections into cbfs as per the following example where

different coreboot stages and raw binary is getting

injected to create the final ROM image:

printf " CBFS fallback/romstage\n"

CBFS fallback/romstage

build/util/cbfstool/cbfstool build/coreboot.pre.

tmp add-stage -f build/cbfs/fallback/romstage.elf -n

fallback/romstage -c none -r COREBOOT -a 64 -S ".car.

data" --xip

printf " CBFS fallback/ramstage\n"

CBFS fallback/ramstage

Chapter 2 tools

162

build/util/cbfstool/cbfstool build/coreboot.pre.

tmp add-stage -f build/cbfs/fallback/ramstage.elf -n

fallback/ramstage -c LZMA -r COREBOOT

printf " CBFS fallback/dsdt.aml\n"

CBFS fallback/dsdt.aml

build/util/cbfstool/cbfstool build/coreboot.pre.tmp

add -f build/dsdt.aml -n fallback/dsdt.aml -t

raw -c none -r COREBOOT

• Add SoC/CPU vendor-specific binary: This process

involves using vendor-specific binaries and tools to

inject into coreboot.rom to call it the final firmware

binary. For example, on the Intel platform, ifdtool is

used to inject a descriptor, ME and EC, whereas on the

AMD platform, an additional step has to be performed

to compress the bootblock (using amdcompress) and

create the build binary (amdfw.rom using amdfwtool)

into PSP; it can then be added directly into the

coreboot image.

At the end of this phase, the final firmware binary (ROM) at a size of

CONFIG_ROM_SIZE is ready using the coreboot open source firmware model

to flash on the target embedded system.

 Configuration Tools
The configuration tools are intended to allow changes in the final firmware

image without going through the entire build process. The scope of

configuration can vary between static and dynamic based on the system

where this tool is running. For example, a tool can be running as part of the

host system. Taking a final firmware binary (FD or ROM) as input to modify

its default configuration value is known as static configuration. Or, if during

Chapter 2 tools

163

the runtime execution on the target hardware a native configuration

interface allows modification of the configuration database, this is called a

dynamic configuration tool.

In this section, we will discuss a few widely used tools in the scope of

different system firmware architectures like coreboot, EDKII, and Slimboot

that are allowed to modify the configuration database.

 Human Interface Infrastructure
Legacy system firmware was lagging in terms of allowing a unified

approach to configure the underlying hardware with different hardware

vendors providing their own configuration tools and access mechanisms.

This made it harder for system integrators to design a robust interface for

end users and various other users of system firmware.

On the UEFI platform, the Human Interface Infrastructure (HII) is used

to provide a flexible and standard way to configure the target hardware.

HII allows the platform configuration to access the hardware interface

and store the data using the form browser. The form browser is like a web

page that uses display and input devices for configuration to take place.

Figure 2-7 shows the high-level operational model of HII.

HII is designed to create the platform configuration in the form of a

data structure that needs localized text and a GUI to interface with the

user. It needs six types of components to allow platform configuration

using HII.

• HID devices: Input devices are used for configuration

in the form of localization. HII supports localization, a

process that helps a product adapt to the local market.

HII supports keyboard mapping to allow users to

choose their own language as input.

Chapter 2 tools

164

Figure 2-7. High-level operational model of HII

• Display devices: The output devices support the

localization. HII supports Unicode characters, which

allows it to support all possible languages to display as

part of the form.

• HII database: The HII database is created dynamically

as the system boots. The UEFI driver is required to

register a list of HII packages into the HI database. The

package list provides different types of binary data. The

data types could be font, string, image, keyboard layout,

form, etc.

• Driver: The UEFI driver provides the Config Routing

Protocol as ExtractConfig, RouteConfig, and Callback to

retrieve and save configuration information associated

with HII forms.

Chapter 2 tools

165

• NV Storage: The NV Storage is to store any data which

remains persistent even after the system is resuming

from the mechanical off state. The NVRAM is getting

used as the NV storage. The HII form retrieves the

configuration data from NV Storage and allows

modification of these parameters from the available

configuration list. The EFI variable services protocol is

used to access the NV Storage.

• Forms Browser: This is a GUI to represent the HII and

allow users to configure the options. HII has its own

standard architecture and language as IFR and VFR to

present the browser with the help of a Unicode string.

• IFR : Internal Forms Representation is the

architectural binary encoding used to present the

user interface pages. The Vfr compiler takes VFR

files as input and generates output IFR files.

• VFR: Visual Forms Representation is the source

code language that is used by developers to design

a form page.

The following table provides a conversion from VFR to IFR for

developers’ understanding:

Chapter 2 tools

166

VFR IFR

form formid = 1,

 title = STRING_TOKEN(

 STR_FORM1_TITLE

),

typedef struct _EFI_IFR_FORM {

EFI_IFR_OP_HEADER Header;

UINT16 FormId;

EFI_STRING_ID FormTitle;

} EFI_IFR_FORM;

Figure 2-8 represents a UEFI browser setup page created using HII.

Figure 2-8. EDKII setup browser using HII

 YAML-Based Configuration
YAML-based configuration is part of Slim Bootloader (SBL) configuration

process to provide a simple and flexible method to modify the board-

specific parameter to support new boards. SBL provides configuration

parameters that are getting used for platform initialization and are

typically categorized into memory; SoC hardware interfaces like USB,

PCIE, and GPIO; and OS boot options.

Chapter 2 tools

167

SBL configuration parameters are packed in a configuration

binary blob. This binary blob is stitched with BIOS regions to apply the

configuration at runtime (during Stage 1B phase of SBL).

The idea of the configuration binary block is to support multiple

board configurations using a single system firmware image; hence, this

blob contains configuration parameters for multiple different boards.

The configuration binary block starts with a configuration blob header

and is followed by the configuration parameters that are organized in

configuration blocks. Each configuration block contains a block header

followed by the parameter structure. Each configuration block is identified

by a unique tag as PLATFORM_CFG_DATA, MEMORY_CFG_DATA, etc.

In SBL firmware architecture, the platform configuration relies on

YAML files. Figure 2-9 shows the high-level view of the YAML-based

configuration.

Figure 2-9. High-level YAML-based configuration

YAML is a data serialized language that can be used for generating

the configuration blobs while working with other modern programming

Chapter 2 tools

168

languages. The idea here is to create all possible configuration options in

SBL source code in the form of YAML syntax inside cfgdata. For example, a

template of Debug Consent configure is shown here:

- DebugInterfaceEnable :

 name : Enable or Disable processor debug features

 type : Combo

 option : $EN_DIS

 help : >

 Enable or Disable processor debug

features; 0- Disable; 1- Enable.

 length : 0x01

 value : 0x00

Users can open the CfgDataDef.yami file using the ConfigEditor GUI

tool to allow the default value to be overridden.

All configuration YAML files will be processed by configuration

tools like GenCfgData, CfgDataTool, and CfgDataStitch to generate

configuration header files and binary blobs.

Finally, use the CfgDataStitch tool to patch the new configuration data

file into the final firmware binary.

 Firmware Configuration Interface
Traditionally, coreboot has limited dynamic configuration capabilities

compared to other system firmware used on the embedded system.

Because coreboot was designed with the principle of instant boot and a

small footprint, it doesn’t provide much scope for a preboot configuration

environment like a UEFI browser. This eventually results in source-based

modifications to enable/disable certain hardware interfaces as per system

firmware users’ needs.

The firmware configuration interface in coreboot is designed to

overcome such limitations and allow users to configure the possible

Chapter 2 tools

169

hardware interface at runtime. This interface will also help to maintain a

single firmware image that can work seamlessly on different motherboards

where the base schematics is the same but the I/Os might be different.

The coreboot Kconfig option CONFIG_FW_CONFIG can be used to

enable this feature where the platform has decided to provide a bunch

of configuration options as part of the devicetree.cb source code for

runtime configuration.

The firmware configuration structure today is limited to a 64-bit

value where the bitmask is used to determine the feature that needs to

be configured at runtime. There are two possible implementations for

enabling the firmware configuration interface in coreboot.

CBFS

A 64-bit raw value can be stored into CBFS with the

name CONFIG_CBFS_PREFIX/fw_config. To enable

this feature, coreboot needs to be built with the

CONFIG_FW_CONFIG_CBFS option.

At runtime while the fw_config_probe() function

is getting called, it will check the Kconfig option and

load the CBFS filename to get this configuration

value. cbfstool can be also used to override this

binary blob at build time.

Embedded Controller

On the Chrome OS platform, the embedded

controller interface will read and write the firmware

configuration value using the CrOS Board Info (CBI)

command. Mainboard users can select CONFIG_

FW_CONFIG_CHROME_EC_CBI options to read the

fw_config value from EC CBI.

Chapter 2 tools

170

The ectool command can also be used to configure

this value using the ChromeOS environment.

Firmware Configuration Table

The firmware configuration table, which is part of

the mainboard devicetree.cb file, starts with a

special token as fw_config and terminates with end.

The SCONFIG tool is used to parse this fw_config

token to generate a static_fw_config.h file after

understanding the grammar, where each field is

defined by providing the field name, the start bit,

and the end bit. Inside each field block, the option

is used to provide the possible option name and

associated value. This example configures the

EMMC boot using fw_config:

field BOOT_DEVICE_EMMC 22

 option BOOT_EMMC_DISABLED 0

 option BOOT_EMMC_ENABLED 1

end

 Binary Configuration Tool (BCT)/Config Editor
The hybrid firmware development model is where the open source

firmware development model gets stitched with closed binary blobs

like the Firmware Support Package (FSP) to create the final firmware

binary for embedded systems. Previous sections discussed in detail the

possible options to configure the open source boot firmware, and this

section will provide mechanisms to allow changes in the configuration

settings for FSP binaries. The Binary Configuration Tool (BCT) (almost

deprecated and replaced with a newer utility named Error! Hyperlink

reference not valid.Config Editor) was developed by Intel to allow

Chapter 2 tools

171

configuration changes in static UPD configurations. Static UPDs are a

kind of configuration parameter that isn’t really meant to change based

on certain runtime decisions; hence, users can make use of BCT/Config

Editor to open the FSP binary and modify the default UPD value as part of

the SPI Flash image. This tool is not designed to manage the dynamic UPD

configuration. See Figure 2-10.

Figure 2-10. Configuring static FSP-UPD using BCT

 Flashing Tools
In the system firmware development approach, the last but very significant

tool is the flashing tool. Starting from the source code development all the

way up to generating the final firmware image, the process will fulfill its

Chapter 2 tools

172

purpose only if the embedded system is able to boot after flashing the final

image on the targeted embedded system’s boot device. The flashing tools

are highly specific to the target embedded system; they need to know the

hardware interface that can be used to flash into the boot device from the

local or remote host. At the high level, these flashing tools can be divided

into two categories: hardware-based tools and software-based tools.

In this section, we will discuss a few popular flashing tools used on the

target hardware for flashing the system firmware. The assumption being

made here is that all these embedded systems are using SPINOR as the

boot device.

 Hardware-Based Tools
Hardware-based tools are used to flash the embedded systems in some

specific scenarios like a device with an empty SPINOR as the very first boot

during the manufacturing process, a corrupted SPINOR, or the device

being unable to boot to the OS or pre-boot console to allow flashing using

a software-based mechanism. This type of tool requires the host system

to be connected to the target device where the host and the target device

will connect using the hardware interface like USB or serial and where

the host system is running the flashing software to write into the target

device SPINOR.

 SPINOR Programmer

Mostly in all the latest embedded platforms, the SPINOR is the default

and soldered onto the board; hence, either the board design has an SF

programming header where the SPINOR programmer can be attached

to flash the firmware image or you need to make use of some custom clip

solution to attach directly onto the SPINOR chip itself for flashing. Dediprog

SF100 and SF600 are the widely used in system programing. Programmers

can flash the firmware on the target system using a USB interface.

Chapter 2 tools

173

 Servo

Servo is a debug board used for Chrome OS projects for multipurpose

operations. One such operations is to allow the developer to flash the CPU

and EC SPINOR using the USB interface. Over the generations, the Servo

hardware specification has evolved from v2 to v4. Flashrom is the utility for

updating the SPI Flash using Servo while running from the Host machine

as well. The utility expects to mention the external SPI programmer

support using the -p option followed by the name of the FTDI FT2232

device. For example:

sudo flashrom -V -p ft2232_spi:type=google-servo-v2 -w $IMAGE

This ensures the recovery of the bricked system by flashing the EC and

system firmware using Servo.

 Software-Based Tools

The software-based tools don’t have any prerequisites for the underlying

hardware interface or any dependency over the host system. These kinds

of tools run on the target device to allow read, write, or erase on the

SPINOR using the pre-OS or OS environment. The following are a few

popular software-based flashing utilities being used on cross-firmware

projects.

 Flashrom

An open source flashing utility is used across various operating systems

and motherboards for detecting, reading, writing, erasing, and verifying

the flash chips. The Flashtom tool can be used to flash coreboot/EFI

images on the supported mainboard. Flashrom has support for various

AICs like network, graphics, and storage.

Chapter 2 tools

174

It also supports a wide range of SPI programmers using USB interfaces

like FTDI FT2232/FT4232H. The flashing mechanism is different from

flashrom while using hardware-based tools like Servo to run as a user

space application on the DUT itself.

Users can run the flashrom -p -w $IMAGE command to write the

final firmware image into the SPINOR using the DUT OS command line.

The flashrom source code is getting managed inside https://github.

com/flashrom/flashrom, and users are expected to build the flashrom

source code to generate the flashrom tool binary. While working inside the

Chrome OS project repository, developers can run the following command

to generate the flashrom tool:

cros_workon --host start flashrom; sudo emerge flashrom

 UEFI Tools and Utility

Different vendors have created their own platform flashing tools using

UEFI pre-boot services or native OS-based drivers to access the underlying

SPI Flash device with the highest privilege.

AMI Firmware Update (AFU) is one popular tool (AfuEfix64.efi) used

on the Aptio platform either from the pre-boot environment or from the

OS layer to update the SPINOR. Many OEMs are using the uefiflash.efi

binary to update the final firmware image from the EFI Shell environment

as part of the shell automated script.

 Summary
This chapter has provided detailed analysis of various system firmware

development tools such as build tools, configuration tools, and flashing

tools that a developer has to be equipped with prior to starting their

own system firmware development. This chapter might also be useful

for firmware developers to understand the underlying tools architecture

Chapter 2 tools

https://github.com/flashrom/flashrom
https://github.com/flashrom/flashrom

175

and build process for popular boot firmware like EDKII and coreboot.

This knowledge can be directly applied while creating your own system

firmware using a new SoC/CPU architecture that is not yet supported by

existing system firmware (EDKII or coreboot).

The book System Firmware: An Essential Guide to Open Source and

Embedded Solutions has a case study about adding support for a new

RISC-based CPU using EDKII.

We also discussed possible configuration options across different

leading system firmware solutions so that developers can make the

right decision when choosing the correct boot firmware for their target

embedded system. Understanding flashing tools and the underlying

hardware interface is useful to ensure guaranteed recovery even from the

bricking state of the target device.

Chapter 2 tools

177

CHAPTER 3

Infrastructure
for Building Your Own
Firmware

“Talk is cheap. Show me the code.”

—Linus Torvalds

Open source firmware development without the right infrastructure is

like fighting a battle without proper weapons and trained troops. The idea

behind open source development is to provide an inclusive environment

across various parties, not limited to only certain companies. As source

code development is an important piece while creating your own

firmware for target hardware, having that code be reviewed by the open

source community with the proper visibility in a timely manner is also

key. This process might also involve migration, where in the future open

source firmware will be used for embedded system development; hence,

developers either need to open their existing infrastructures to the external

world or adopt the available open source infrastructures for product

development.

© Subrata Banik and Vincent Zimmer 2022
S. Banik and V. Zimmer, Firmware Development,
https://doi.org/10.1007/978-1-4842-7974-8_3

https://doi.org/10.1007/978-1-4842-7974-8_3

178

This chapter will provide an overview of the existing open source

infrastructure offerings and help the product development team make the

right decision for creating their own firmware. Additionally, this chapter

will focus on reducing the onboarding gap between firmware architecture

migration and open source firmware development by reviewing the code

of conduct and coding standard differences between different firmware

versions.

 Overview of Source Control Management
Firmware development is a process that involves creating source code

from scratch and modifying the source code based on the hardware

behavior. In most cases, the firmware code is used to testify the hardware

interface and eventually results in the platform specification.; hence, this

source code development process might involve trial and error to create

the final working version. Source code management (SCM) is important

to ensure that the working code base never gets tampered with due to the

trial-and- error part of the development process.

This process gets more complicated with more engineers working

on the same project, which means there is a need to share the code in a

central location rather than maintaining it on a local machine. This type

of source control management is also referred to as version control and

can work as a central database to host the source code for multiparty

development. One developer might need to work on a module for

developing new features, and others might need to make some bug fixes

on the same module; hence, there might be a chance that while merging

their individual code changes, they override each other’s work by mistake.

Version control helps the team to solve such problems by tracking the

changes for every individual and resolves any conflicts by rebasing the

changes onto the branch master.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

179

The source control also needs to be shared for peer review. While

developing the firmware with the open source community, this step is

important to submit code changes for review and generate pull requests

for a reviewer to review your code changes.

Based on the previous discussion, it’s clear that any firmware is looking

for three major features from SCM.

• A free, open-source-friendly, high-quality version

control system

• A cloud-based repository hosting service that allows

multiple teams to collaborate and share source code

• An application that can provide the code review

functionality

Keeping these requirements in mind, let’s look at the existing offerings

to select the correct SCM for firmware development.

 Version Control System
Using version control software (VCS) for firmware development provides

flexibility for the development team to travel back and forth on a

development branch without fear of losing the current project status. This

process is sometimes sufficient to identify a regression by just filtering the

branch based on different commit IDs and finding the culprit code change

list (CL) without requiring any additional debugging.

 Subversion

Subversion (SVN) is a free and open source software tool for performing

source control management. SVN is considered the successor to the

widely used Concurrent Version System (CVS) tool on Windows operating

systems. Many open source projects such as FreeBSD and SourceForge

have used SVN for code management.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

180

SVN provides an improvement over CVS by adopting the concept

of atomic operations, which prevents databases from being corrupted

due to partial changes. Hence, most DevOps teams that relied on CVS

in the past have switched to SVN for the improved features and fast

response compared to CVS. Although SNV has support for almost all

leading operating systems, it still provides better support with Windows

OS. It provides easy plug-ins for integrating with modern IDEs, such as

Visual Studio.

One of the most popular VCS tools that is used by various projects is

called Git. As per the survey data conducted by Stack Overflow in 2018, Git

is the dominant choice for VCS; approximately 88 percent of developers

are checking in their source code using Git; the next most popular is

Subversion with 16.1 percent.

 Git

Git is a free and open source project originally developed by Linus

Torvalds to support the development of the Linux operating system kernel.

Many open source projects such as the Linux kernel and Eclipse use Git for

version control.

Git is an example of a distributed VCS (DVCS) because Git supports

the installation and maintenance of the source tree in the local machine

without any need of a remote cloud. Unlike other popular VCSs like SVN or

CVS, where the full version history resides in a single place, in the case of

Git, each local repository consists of the full history of project check-ins.

Here are the underlying principles of Git:

• Performance: The performance of the Git while doing

tasks such as committing new changes, branching,

merging, and comparing different versions is much

better than any other version control software.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

181

Git was designed with the concept of a file system;

hence, it makes the versioning easier compared to

other SCMs. Git relies more on file content rather than

on the name of the file. The filename is something that

can change over the time by different developers based

on project need.

• Distributed development: Unlike other version control

management solutions, Git sets itself apart with

its branching model. This allows for a distributed

development where each developer’s local repo is self-

sustaining in terms of the project development history

and code changes. Later these changes can be pushed

into the mainline branch from the local branch. See

Figure 3-1.

Figure 3-1. Git distributed development model

This distributed development model provides flexibility

to developers to experiment with the source code

without creating any new repository when enabling a

new feature that might need to add, modify, or delete

files from the working branch.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

182

• Security: Git uses SHA-1 to ensure the integrity of

the source code branch from accidental corruption.

Starting from the content of the files, version, commits,

tags, and other data objects for Git are secured with a

cryptographically secure hash. The method to see the

Git history is associated with the commit ID, which

is also generated using a unique combination of the

following:

• The source code tree

• The patent commit SHA-1

• The author information

• The committer information (if it’s different from

the author)

• The commit message

Figure 3-2 shows the Git unique commit ID.

Figure 3-2. Git commit ID with commit message

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

183

Git Working Model

The single biggest difference on Git that separates it from other source

control management software is its branching model. As shown in

Figure 3-1, Git supports distributed development that allows you to create

an independent local repository upon syncing the source code from

the remote repository. Working on the local branch is almost similar to

working on the remote repository in terms of making any code changes,

adding the changes, committing the changes, and merging into the local

branch. Later you can submit those changes to the remote repository.

Figure 3-3 describes the Git branching model that allows developers

to share the code with each other by creating development Git branches.

These Git branches are an independent line of code compared to the

default branch where typically developers start their work after syncing

the code from the remote repository, known as the main branch or

master branch. Any changes that are part of this Git local branch don’t

automatically reach the master branch unless you perform a pull/push

request.

Figure 3-3. Git branching model between remote and local branches

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

184

At a high level, the Git working model can further divided into three

major categories.

• Remote repository: This is typically referred to as a

unified sharable code database, which is shareable

across various developers based on either their

access account or open access. The idea here is to

allow seamless access of the source code beyond

the local repository; hence, anyone in this world can

contribute to the source code or even browse the

code. This remote repository can hold one or more

than one project repository. Typically it is the job of

the DevOps team to create a remote repository for

project development so that development resources

can be shared, but this eventually reduces the

development time.

• Local repository: After the DevOps team has provided

you with the remote repository where you can check

in the project files and folders, you still need to have a

way to browse or modify the source files or directory

structure in your local system. To support this, Git

provides cloning, a mechanism by which developers

can sync the source code from remote repositories

(referred to as the origin) to their local machine. By

default the source code resides in the branch known as

the master branch. Figure 3-4 shows this cloning model

to create the local repository.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

185

Figure 3-4. Git workflow between working directory and
staging area

• Working directory: After syncing the source code from

the origin to the master branch, the developer creates

the local branch to ensure an unpolluted master

branch. Developers are now free to modify the changes

as per the project requirements. These changes reside

in files and/or directories that are still not merged into

the local branch.

 a. Staging area: The staging area is for the

intermediate process by which the developer

can prepare the snapshot of the local changes

into the working directory prior to committing

them into the local branch to keep track of those

changes as part of the project change history.

Figure 3-5 provides a few examples of widely used Git commands and

working relationships between these work streams (remote repository,

local repository, and working directory) while using Git for source code

management across teams.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

186

Figure 3-5. Git workflow between working directory and
staging area

Data Structure

The internals of Git were designed with keeping the file system concept in

mind, which later extended to support a full set of features expected from

a traditional SCM. Here, a detailed understanding of the information is

stored by each commit uniquely in the form of a file system. Git has two

data structures: a stage or cache index, to provide information about the

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

187

working directory and the revision supposed to be committed next on the

working directory; and an object database. Each Git object consists of three

pieces of information: type, size, and content. The size is the size of the

contents of the file. Git uses three types of objects: commit, tree, and blobs.

Commit object: A commit object contains the metadata such as the

tree, parent, author, committer, and commit information. The following

diagram shows the commit object description (from the open source

coreboot project):

commit 0603902..

tree 733f5fd..

parent 492a79..

author Subrata

committer Subrata

Developers can use the git show command with the --pretty=raw

option to get more details about the commit object.

$ git show -s --pretty=raw 0603902

commit 06039025250e0908c8da63f879eafd2b3581db19

tree 733f5fd080bb87a9880441f9041ac17e4def6e64

parent 492a792d3872ee2683db169fb011daf87b71bff9

author Subrata Banik <subrata.banik@intel.com> 161528439 +0530

committer Subrata Banik <subrata.banik@intel.com>

1615439203 +0000

 soc/intel/common/block/cpu: Use tab instead of space

 Convert the lines starting with whitespace with tab as

applicable.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

188

 TEST=Built google/brya0 and ADLRVP with BUILD_TIMELESS=1:

no changes.

 Signed-off-by: Subrata Banik <subrata.banik@intel.com>

Here is a description of the fields that are part of the commit object

from the previous example:

• tree: The SHA-1 name points to the tree object. Each

commit object is linked to a dedicated tree object to

represent the contents of the directory at the time this

commit is being made.

• parent: The SHA-1 name refers to the previous commit

rather than the current one. If the current commit

doesn’t have any previous comment, then the parent

commit is “nil,” and the current commit is considered

to be a “root” commit.

• author: The name string is the name of the author who

wrote this code change.

• committer: The name string refers to the name of the

person who committed the code change. In some

cases, the author name and committer name could

be different, such as if the author has sent the code

changes to the committer to check into the database.

• comment: This describes the purpose for this

code change.

Tree object: Each commit object points to a tree object, and each

tree object further holds multiple points to blobs and other tree objects.

Typically, a tree represents the directory structure in the project database

and contains a list of filenames. Each filename points to a blob. The

following diagram shows the tree object description (from the open source

coreboot project):

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

189

tree 733f5fd..

blob ec0f95b.. Makefile

tree db803ce.. src

blob 14879c1.. README.md

tree 3f4fd34.. util

Developers can use the git ls-tree option to get more details about

the tree object based on a SHA-1 name for a tree.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

190

Blob object: Each file listed in the tree points to a binary data object

called a blob. The blob contains the compress contents of the file at the

time of the commit. The blob file doesn’t have any name, timestamp, or

metadata; hence, just renaming the filename doesn’t change the blob

object that file is associated with. The following shows the blob object

description (from the open source coreboot project):

blob ec0f95b..

SPDX-License-Identifier:
BSD-3-Clause

ifneq ($(words $(CURDIR)),1)
$(error Error: Path to the

main directory cannot contain
spaces)
endif
top := $(CURDIR)
src := src

Developers can use the git show option to get more details about the

blob object based on a SHA-1 name for a file.

Let’s look at a small example to understand the working relationship of

these data objects across various Git commits.

Here is a sample project directory and file structure that are managed

under Git SCM:

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

191

Project HEAD With Latest Commit on HEAD

$ tree

.

|-- io.h

`-- x86emu

 |-- fpu_regs.h

 `-- x86emu.h

1 directory, 3 files

$ tree

.

|-- io.h

`-- x86emu

|-- fpu_regs.h

|-- regs.h

|-- types.h

`-- x86emu.h

1 directory, 5 files

Figure 3-6 is the example of git commit and associated data objects to

show how it’s being managed to track changes in the Git commit history.

The last commit (399689b..) has added two new files (regs.h and types.h)

into the project directory, so two new blobs are shown in Figure 3-6 under

the blob data object column.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

192

Figure 3-6. Relationship between Git data objects

The rest of the blob doesn’t change with the latest commit; hence, the

tree links to the blobs from the previous commit. This method of reusing

the blobs between commits helps to make the internal Git operations

faster with optimized space.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

193

Setting Up Git

Using Git as a version control management software for firmware

development has many benefits that we have already discussed such as

a distributed development mechanism, flexibility, and wide community

support for code maintenance without extra cost. Git is a universal tool

that is available on almost all possible operating systems and is easy to

install and use.

Installing Git on Windows

Windows users can download the stand-alone installer for Git from

https://gitforwindows.org.

After successfully downloading the installer package, developers can

start the installation, and the Git Setup installation wizard will prompt

for the default installation path and the default settings to complete the

installation, as shown in Figure 3-7.

Figure 3-7. Git Setup installation wizard with default settings

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

https://gitforwindows.org

194

At this stage, Windows users can open Git Bash to start syncing the

source code from the remote repository or pushing the code into the

remote branch. Prior to that, the user needs to configure the username and

email to allow Git to use this information to add during Signed-off-by

when running git commit -s.

$ git config --global user.name 'Subrata Banik'

$ git config --global user.email hello@git.com

Installing Git on Linux

With the Linux distribution package, the user can choose to make use of

either apt or yum to install the Git package.

From the Linux terminal, install Git using apt-get on Debian/Ubuntu.

$ sudo apt-get update

$ sudo apt-get install git

Or make use of dnf/yum to install Git on Fedora.

$ sudo yum install git

After installing the Git package, users can run git --version to verify

the installation version. Linux users also can download the Git source

code and dependent package to be able to build the code to create the Git

installer. After successful installation, the user needs to add a username

and email ID in a similar manner to what’s being done for Windows Git

installation.

Create and Register Git SSH

User authentication works slightly differently when working with Git.

Instead of using a username and email ID to log in to Git, Git uses an

SSH key (an access credential for the SSH network protocol) to create

a public/private key pair to initiate a trusted communication with

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

195

the remote branch. SSH keys are generated using a key cryptographic

algorithm (typically, RSA) for which the SSH command line has included

the key generation tool. The public key is registered with the Git remote

repository, while the private key is stored on the development machine.

The combination of public/private key pairs will help users to pull/push

the source code changes from/to remote repositories.

The process for creating the SSH key is the same across different

operating systems (note: on Windows OS, users need to use the Git Bash

shell to run these commands). Typically, these operations are taking place

inside the .ssh directory (create it if it is not available by default).

Step 1: Use the SSH keygen tool and run the following command:

$ ssh-keygen -t rsa

This command will create a new SSH key pair and prompt you to enter

a file in which to save the key. Users can either specify the new file location

or press Enter to accept the default path as /Users/<user_name>/.

ssh/id_rsa.

Step 2: Additionally, it will ask to enter the passphrase, which may

work as an additional layer of security in case someone has access to your

development machine and might access the remote repository. Adding a

passphrase will reduce the risk even with a physical attack.

$ ssh-keygen -t rsa

Enter a file in which to save the key (/Users/Subrata/.ssh/

id_rsa): [Press enter]

Enter passphrase (empty for no passphrase): [Type a passphrase]

Enter same passphrase again: [Type passphrase again]

Your identification has been saved in /Users/Subrata/.

ssh/id_rsa.

Your public key has been saved in /Users/Subrata/.ssh/id_

rsa.pub.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

196

The new SSH key is now registered, and users can make use of the Git

repository.

Git Cheat Sheet

This section provides lists of basic, useful, and advanced Git commands

that might be helpful for new users who have migrated from other SCM

versions to Git and started managing the project database. From my

experience, while migrating the project from internal or closed source

SCM to open source Git, the initial few weeks are tough because of the

number of Git commands used for pulling/pushing the repository,

rebasing, resetting the HEAD, etc. Ideally this effort will be useful for

developers and eventually save development time as well.

Basic Commands

git init

<directory

name>

this is the first step to bring a directory under git control. run

this command with a directory name specified to create an

empty git repository. not specifying the directory name will

result in initializing git into the current directory.

git clone

<repo>

run this command to clone the remote repository specified

with the repo into the local machine to create the local repo.

the remote repository can be located in a remote machine and

accessed via http or ssh.

git diff this command shows the unstaged changes in the working

directory.

git log list the entire commit history from the local repo using the

default format. appending --oneline will show each commit

to a single line, and -p will display the full diff of each commit

changes.

(continued)

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

197

(continued)

Basic Commands

git status show the current changes in the working directory. this

command lists the files in three categories as staged, unstaged,

and untracked.

git add

<file(s)/

directory

name>

run this command to stage all the changes from the working

directory to the local repository.

git rm

<file(s)/

directory

name>

run this command to remove a file(s) or directory from the

working directory to the local repository.

git commit -s Commit the staged snapshot and add a description about the

changes. use --amend instead of -s to modify the existing

commit.

git format-

patch

 -<commit

count>

run this command to create patch files from the current branch

head based on the commit count. It’s a useful command to

share working patch files between teams without review.

git am

<patch-file>

apply patch-file generated from the format-patch

command on the local repo. all changes as part of this

command will be part of the staged changes and in a committed

state.

git apply

<diff file>

apply changes from the diff file to the working directory. all

changes will be listed under unstaged files.

git rebase -i

<base SHA-ID>

Interactively rebase the current branch onto the base sha

Id. users can specify the mode of changes for each commit

using rebase.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

198

(continued)

Basic Commands

git rebase

 --continue

run this command to migrate to the current branch’s latest

commit after finishing the rebasing process.

Undo Commands

git revert

<commit id>

Create a new commit by reverting any previous commit

specified by the commit Id.

git reset

<file>

remove the file from the staging area to the unstage area

without overriding the changes being made to the file.

git reset use this command to undo the changes from the staging area to

match the recent commit.

git reset

 --hard

use this command to undo the changes from the staging area

to match the recent commit and overwrite all changes in the

working directory.

git reset

 --hard

<commit id>

move the current branch head backward to a commit

specified by a commit Id. this process will eventually delete all

uncommitted changes.

git undo a good thing about git is that there’s a “undo” command that is

capable of recovering from an undue state, such as correcting

the last commit to include that small change. revert a whole

commit because that feature isn’t necessary anymore.

Managing Branches

git branch list all the branches in the local repo. specify a branch name to

create a new branch.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

199

Basic Commands

git checkout

 -b <branch>

Create and check out to a new branch specified with the branch

name. don’t use the -b flag if an existing branch is available

with the same branch name.

git merge

<branch>

merge a branch into the current branch.

git reflog reference the log (reflog) to record the changes made on the

tips of branches and other references in the local repo. this is a

useful command to travel between various changes in the local

branch without impacting the remote repo.

Accessing Remote Repository

git remote

add <remote

name> <remote

url>

Create a new connection to a remote repo.

git fetch

<remote name>

<branch>

fetch a specific branch from the remote repo.

git pull

<remote name>

fetch the code from a specific remote repository into the current

local branch.

git push

<remote_name>

<branch>

this command pushes the branch specified with the branch

name to remote. If the branch name is not specified, then it will

push changes ahead of HEAD in a local branch to the remote

repository.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

200

 Version Control Repository Hosting Service
Earlier we provided details about version control and using Git because

it’s the most efficient way to handle version control management. Unless

you have a hosting service to manage your version control outside your

local machine, it’s not possible to allow a wider audience to contribute to

your project development and review the activity. This section discusses

a version control repository hosting service to manage more than one Git

version control efficiently.

A most common way to explain the version control hosting service is

that it’s like LinkedIn, a web-based hosting service for your professional

work where you can add your work details, experiences, achievements,

etc., for others to see and comment on. Similarly, GitHub is a web-based

version control repository hosting service for Git. Git allows you to manage

the version control over a local host or server, whereas GitHub provides

a cloud-based hosting service that lets you manage your multiple Git

repositories after creating a free account on GitHub.

 GitHub

GitHub is a web-based Git repository hosting service that allows all of the

distributed development features, version revision control, and source

code management functionality of Git as well as its own features. GitHub

provides a graphical user interface so that an individual Git repository can

be remotely accessed by an authorized person from any computer without

cloning the code into a local machine. From the user standpoint, it looks

as if a hub that allows docking of several different Git repositories that

users can browse. Figure 3-8 shows the high-level GitHub work model with

hosting various Git repositories.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

201

Figure 3-8. GitHub work model

GitHub provides a no-cost user profile for accessing the basic open

source repositories (it also has an access control method to restrict

unauthorized user access). Typically, GitHub accounts come with an

abundant storage space that allows users to host their working project and

allows the open source community to review, modify, and share feedback

by creating separate Git branches. This also helps to build the professional

profile to know the developer’s proficiency.

Unlike Git, GitHub recommends its users work on a specific branch

while developing any new feature. This makes it possible for entire teams to

work together in a single project even without being bottlenecked on each

other while implementing the code changes. With each new code change, a

new branch is created; these branches are like copies and won’t get merged

into the master branch unless the user chooses to raise a pull request for

review. As mentioned earlier, GitHub not only inherits features from Git but

also has few unique features over Git to make it more powerful.

• Fork: This is a copy of a repo in your own user account

where you can make the changes without affecting

the original project. Suppose your account doesn’t

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

202

have access to write into a repository; then this feature

allows you to copy one user’s repository into your

own account and modify it. Later you can raise a pull

request to the project owner to allow merging into the

original project.

• Pull request: Unlike Git, this pull request is different

from what pull does in Git. This allows a GitHub user

to share the code changes with the project owner once

the change is ready after copying the original project

repo. Using pull requests, you can notify others about

changes you’ve pushed to a branch in a repository on

GitHub. Once a pull request is opened, you can discuss

and review the potential changes with project owners

and add follow-up commits before your changes are

merged into the master branch. This is equivalent to

reviewing record creation in Gerrit.

• Pull: Just for reference, git pull is a convenient

operation that a user does while working at the Git

command line for getting the latest changes from

the remote repository.

• Merge: After the user has raised the pull request and the

project owner has approved the changes, the project

owner can merge these changes found in your repo

into the original repository just by clicking the “Merge

pull request” button.

Users often get confused between the original purpose of Git and

GitHub as they’re tightly coupled, but here are the differences between Git

and GitHub:

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

203

Git GitHub

git is a command-line

software/tool.

github is a guI enabled, web-based repository

hosting service.

the purpose of git is to track

the changes being done in the

different local repositories to

provide the VCs and sCm.

github provides an abundant storage space to

upload several git repositories. github not only

inherits features from git like VCs or sCm but

also has its own few key features like forks, pull

requests, and merges.

 Code Review Application
In earlier sections, you learned how to use the version control system on

local machines and make it available in the cloud for much wider access.

The power of Git and GitHub also provides a responsibility to its users

(developers and maintainers) to make sure each code change goes through

a proper review process and there is a way to track the review comments.

Assume a developer came back a year after the code submissions and

asked a very basic question about the integrity of the code. Without a

backup system that points back to the code review database, it would be

difficult to answer such questions. Hence, there is a need to have a code

review model as well as part of the firmware development infrastructure.

In general, one could argue that GitHub by default provides options

to review the code changes as soon as someone adds changes and raises

a pull request. But there are some serious concerns while reviewing the

code in that format where one might lose track of the comments in the

code, and viewing the exact code changed since the last commit is really

difficult. There are some offline tools that will allow you to manually diff

the code changes, but doing this for every pull request makes the reviewer

lose interest in reviewing the code.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

204

 Gerrit

Gerrit is a free web-based open source software application that provides

the code review functionality. The purpose of Gerrit is to make the

code review easier and more efficient. Gerrit application serves as an

intermediate between developers and the Git repositories. It also can

be viewed as a web-based Git repository hosting service for code review

purposes.

Unlike GitHub, Gerrit doesn’t support multiple commits under a single

pull request. The fundamental idea for Gerrit is that one code change

is like one node in the overall commit. For example, once you are done

with your code changes and generate a commit using the git commit -s

command, you will add the unique change ID to track the changes and

submit the code for review using git push <remote-name> HEAD:refs/

for/master. Gerrit will generate a unique commit ID for each code change

being submitted, and any incremental changes on top of that commit ID

using the same change ID would create a new patchset. Because each

patchset is treated separately in Gerrit, any review comments given for

a particular patchsets would be part of the tracking process unless the

developer has addressed the comments and marked them resolved.

At a high level, this process is much simpler compared to the GitHub

review process where a developer first needs to fork the remote repo into

the user’s own account and then clone that code into a local machine,

create a branch, make the changes, push the changes, and then finally

create the pull request for review. With Gerrit, developers just need to

clone the remote repo, do the changes, and push it directly into the master

branch for review. Here are the primary functions of Gerrit that make it a

powerful review medium:

Asking for code review: Gerrit provides a simple

and open code review process. Submitters can add

the reviewer name (or email ID), and Gerrit will

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

205

notify the reviewer once they have been added. Also,

this is a very open cultured environment where

anyone can add to a Gerrit review. See Figure 3-9.

Figure 3-9. Gerrit My Review view from Gerrit dashboard

• Reviewing the code changes: A Gerrit code review

provides a nice side-by-side representation to compare

the original and modified code. Each code change

ranges from -2 to +2 (by default the code review

starts with the Code-Review as 0), and a code review

requires a minimum Code-Review +2 (looks good to

me, approved) vote to get merged into the mainline.

We will discuss code review etiquettes in the “Code of

Conduct” section. If the reviewer has some concerns,

then the reviewer could initiate a discussion by adding

a review comment for each new line of code added. See

Figure 3-10.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

206

Figure 3-10. Gerrit adding review comments

• New patchset: If the reviewer is not satisfied with the

code review and added the code review comments

with a suggestion to improve the code qualification,

then the submitter would need to push a new patchset

to address those review comments. This process

continues until the submitter resolves all review

comments and the reviewer has casted the vote to let

go of this code change.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

207

In Gerrit, each patchset refers to a separate code review.

Each time the submitter addresses the review comments

and updates the commit using git commit

 --amend, it regenerates the new commit hash. The

difference between the old commit hash and new

commit hash will allow Gerrit to show the delta code

between two patchsets. This process is very efficient

while reviewing significant big code changes that involve

multiple files; hence, reviewers don’t need to review

all the code changes every time. Rather, the difference

between the current (n patchset) and previous patchsets

(n-1) would help to list the modified files between

those two patchsets. If there are no changes in those

two patchsets (may be a rebase), then a Gerrit GUI will

explicitly mention “nothing new to see.” See Figure 3-11.

Figure 3-11. Multiple patchsets to address review comments

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

208

• Submitting code changes: After the code review is done

and the patchset has required the correct number

of votes for Code-Review, All-Comments-Resolved,

and Verified (and others some third-party plug-ins

if applicable like IP scan, etc.), a project maintainer

can allow the code changes into the mainline of the

repository by clicking the Submit button. This process

of allowing code changes into the master branch

of the project repository might need special access

permission.

If the purpose is just a code review in a much simpler and efficient way

and ensures that the code review process is being maintained separately

from managing the Git repositories, then Gerrit is the best option for you

while developing your own firmware for embedded systems.

 Best Known Mechanism of Source
Code Management
SCM not only provides the version controlling mechanism but also

provides a flexible, collaborative code development environment that

is a must-have for the firmware development approach using the open

source firmware development model. SCM is a huge boost for the

engineering team to be able to manage the code development and project

history without any additional resource code. Here are some best known

mechanisms to handle the SCM efficiently:

Commit frequently: Commits don’t cost anything

to anyone, and they’re easy to create. Don’t try

to combine unnecessary code changes into one

commit just to avoid meaningful multiple commits

if possible. Ideally developers should make the

commit as an incremental approach toward the

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

209

firmware development process. Frequent and small

commits also help while debugging the issue by

using git bisect.

Latest to upstream master: Working in a distributed

development environment, it’s important to always

be in sync with the latest upstream code. It’s been

seen that many developers don’t bother updating

their local copy with the latest upstream master

code. This eventually creates a problem while trying

to commit a change sitting in a local copy that is

far behind the latest upstream master. Hence, it’s

recommended to update the local copy on a regular

basis to avoid merge conflicts.

Provide details in commit: Commit is the face of the

underlying code change, and everyone might not

have the time and interest to go through the entire

code while using git bisect. Having a meaningful

commit message with ample details allows

developers to understand why the code changes are

being made and what is in the code at a high level

without deep dive into each commit.

Make use of branches: Git provides a powerful

branching model where developers can create their

own branch derived from the master to continue

their development. This process ensures the master

always remains untouched or unpolluted. Once

development is done on a specific branch, then it

can be merged into the master.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

210

Prompt addressing review comments: Avoid

outstanding review comments for more than 24

hours. It’s the patch owner’s responsibility to ensure

all of the review comments are addressed. Don’t

leave your patch at the half-done stage. If you

think your patch is not progressing in the review,

seek help and ask for review. Also, avoid rebasing

the entire patch tree repeatedly. It’s painful for

reviewers as it will spam their inboxes.

 Code of Conduct
Working on a firmware project using an open source firmware

development model means collaborating with a wider technical

community. This community involves a mixture of professionals with

different domain expertise, volunteers, and students from all over the

world. They all are working together for their mutual interest in making the

virtual workplace inclusive to connect with people, learn from each other,

and provide mentorship as and when required.

Such a diverse environment might also lead to a communication gap

and unpleasant situations if not managed with some standard protocols,

which are also referred to as a code of conduct (CoC). The CoC provides

some basic ground rules that the community should follow to make the

workplace free from bad experiences. The point of defining the CoC is to

bring equality to folks with vast technical knowledge and experience, even

to the youngest contributor who has just started their professional journey

in firmware. Here is some common community etiquette that every

individual can follow:

• Be friendly and supportive in all possible forms of

communication including the Gerrit code review,

mailing lists, IRC chat rooms, reporting bugs, and

virtual or physical meetings in events or conferences.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

211

• Be open while giving comments and receiving

comments as well. In the majority of cases, unpleasant

situations happen during the code review.

For each code change, the Gerrit code review provides

a range between -2 to +2. The way it works is if the

reviewer gives -2 to a code change, it means there

is something very wrong fundamentally, and the

reviewer doesn’t accept the code change and also

forbids the code changes from being merged into the

mainline. Typically, reviewers should provide ample

details to justify the -2 vote and provide a path forward

to overcome this vote in the coming patchset. A -1

vote shows the same preference as -2 but on a slightly

lighter note where reviewers don’t want to merge this

code change as is. A good reviewer not only casts their

vote but also provides equally good review comments

for the submitter so that the submitter can move ahead

with the code changes and fix the problem. Note: in

general, each code change has its own purpose, so it’s

better not to create a roadblock for others.

• Be sensitive about the fact that due to the distributive

development approach of open source firmware,

many active project contributors are not native English

speakers; hence, they might have misunderstood the

review comments or provided some comments that

might appear rude.

• Be careful with any words that might spread hatred,

commenting on someone’s sexual orientation, gender,

race, religion, educational qualification, color, or

disability. Also, avoid inappropriate physical contact and

unwelcome sexual attention during face-to-face meetings.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

212

If you come across any of these situations, then please reach out to

the concerned team via email. Typically, all open source communities

have strict CoC policies to ensure that the community doesn’t encourage

unacceptable behavior. The best practice to avoid such unpleasant

situations is to stop such issues at their core, and once an issue is raised,

people are expected to comply immediately. Making the same mistake in

a repetitive manner might result in a temporary ban or permanent block

from the community.

Although this is not the exhaustive list of dos and don’ts in the open

source firmware development community, while you are focusing on

creating your own firmware, these are basic guidelines to make developers

and reviewers understand their roles and responsibility while they are

taking part in such technical communities.

 Coding Standard
The purpose of this book is to provide all the required details to prepare

developers for architecture migration from closed source firmware

development to open source firmware development. In this migration

process, one important thing that remains unnoticed is the coding

standard.

Developing firmware is more than just writing the code that will work

on embedded systems. Rather, the firmware engineer also needs to ensure

there is a long-term maintenance plan for the written code. This process

involves the following:

• Define a coding style that can be easily adopted by

all developers, even the most recent ones, with a

minimum learning curve.

• Write code in such a way that provides ample

information about the change requirements.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

213

• Code maintenance should be independent of the

original author; that means the written code can

be maintained by others without having detailed

knowledge about the intricacies of the code.

• Provide documentation wherever possible to explain

the accurate code changes to minimize the learning

curve for new engineers.

The most popular firmware uses the C programming language because

of its simplicity, flexibility, and wide adoption in embedded systems. But

the problem that the C programming language faces is the inconsistent

ways it’s used among various developer groups. This lack of uniformity in

developing firmware using C makes it harder to use unless a unified coding

standard is enforced.

Although each firmware has its own coding standard and guidelines

for developing the source code, this section will discuss the open source

firmware development approach using coreboot. The topics covered in

this coding standard include the following:

• C language rules and guidelines

• Naming conventions

• Commenting rules

• Standard way to create commit message

Ideally these guidelines will be helpful for engineers migrating their

architecture from closed source firmware development to open source.

The major benefit that coreboot provides to its developers is the

similarity with the Linux kernel coding style. Hence, it’s easy to adopt

among developers.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

214

 Indentation
The idea behind indentation is to make it easy for the developer to look at

the code. It helps to define where a block of control starts and ends. Tabs

are eight characters, and hence indentations are also eight characters.

Refer to the following example:

int azalia_enter_reset(u8 *base)

{

>> /* Set bit 0 to 0 to enter reset state (BAR +

0x8)[0] */

>> return azalia_set_bits(base + GCTL_REG, GCTL_CRST, 0);

}

Using eight characters for multiple indentation levels in a switch

statement would be difficult; therefore, you can align the switch and

its subordinate case labels in the same column. Refer to the following

example:

>> switch (src) {

>> case EC_SMI_BATTERY_LOW:

>> >> printk(BIOS_DEBUG, "Battery low. Shutting

down\n");

>> >> outl(ACPI_PM1_CNT_SLEEP(S5), ACPI_PM1_CNT_BLK);

>> >> break;

>> default:

>> >> printk(BIOS_DEBUG, "EC_SMI event 0x%x\n", src);

>> }

The intention here is to provide better code readability for the

developer; hence, it’s recommended not to make a cluttered single line,

which is tough to read and understand. The following example shows the

difference between bad and good programming practices, although the

compiler grammar would be able to understand both:

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

215

Bad Programming Practice Good Programming Practice

int a = 1, b = 2, c, d;
c = a + b; d = b - a;
if (expression is true) return true;

return false;

int a = 1;
int b = 2;
int c = a + b;
int d = b - a;
if (expression is true)

return true;
return false;

vim is a widely used source code editor for the Linux OS. In addition,

there are many advanced feature integrated development environments

(IDEs) available like Eclipse that make life easy for developers and don’t

leave space at the end of lines; also, avoid having unnecessary blank lines

between two source code lines.

coreboot supports a special file for configuration called Kconfig. This

file consists of several configuration tokens called config. config supports

mixed indentation where all definitions are indented with one tab but help

text is indented with an additional two whitespaces. Here’s an example:

config CONFIGURABLE_CBFS_PREFIX

>> bool

>> help

>> ..Select this to prompt to use to configure the prefix

for cbfs files.

 Maximum Columns per Line
Coding standards are also necessary to make it easy for reviewers to

understand the code with a single glance. Having a longer code line with

too many characters in it makes it harder to follow the purpose of that line

and reduces the code readability.

Typically, many firmware coding standards recommend limiting the

single line by 80 columns. In the latest version of coreboot, this limit is

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

216

96 columns per line. If you need to write a longer line than 96 characters,

then make use of the newline character to break the line onto the next

line. There are some exceptions such as printk functions, where breaking

such functions onto multiple lines is not recommended as it will break the

ability to grep a user-visible line while debugging.

 Using Braces
For conditional statements there is a need to combine all the required

actions under the statement to make it more readable. In the C

programming language, braces are used for this purpose. Here’s an

example:

if (!rom) {

 printk(BIOS_ERR, "%s failed\n", __func__);

 return current;

}

This applies to all conditional statements such as if, switch, do, while,

for, etc., where the opening brace is the last character on the line, and the

closing brace is first on the next line.

You don’t need to use unnecessary braces for a single statement, as

follows:

if (!rom)

 rom = pci_rom_probe(device);

The previous recommendation doesn’t apply if a conditional

statement doesn’t have a single statement in both cases. The following

example uses braces even if one conditional statement still has a single

statement:

if (dock_present()) {

 printk(BIOS_DEBUG, "dock is connected\n");

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

217

 dock_connect();

} else {

 printk(BIOS_DEBUG, "dock is not connected\n");

}

The starting of the brace rule certainly doesn’t apply for functions

where the opening brace starts at the beginning of the next line, as

shown here:

void __noreturn pcidev_die(void)

{

 die("PCI: dev is NULL!\n");

}

 Need for Spaces
This is why you need to use spaces:

• Recommendation for keywords and functions: Typically,

you will use spaces after most of the keywords such

as if, else, switch, do, while, and for, but there are

exceptions like sizeof, typeof, etc., which look similar

to a function call. Refer to the previous examples where

whitespace is used between if and expression. Also,

note that there is no whitespace between the function

name and passing argument. Do not add spaces

around (inside) parenthesized expressions.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

218

Bad Programming Practice Good Programming Practice

if(!rom)

 rom = pci_rom_probe (device);

if (!rom)

 rom = pci_rom_probe(device);

addr -= sizeof (struct cpu_info); addr -= sizeof(struct cpu_info);

• Recommendation for operators: Use one space

around the most binary and ternary operators, but

there are exceptions like no space after the unary

operators, no space before the postfix increment and

decrement unary operators, and no space after the

prefix increment and decrement unary operators. Also,

there is no space around the period (.) and arrow

operators (->).

Bad Programming Practice Good Programming Practice

unsigned int a=1;

unsigned int b = 2;

unsigned int c= ! (++ a + b --)

unsigned int a = 1;

unsigned int b = 2;

unsigned int c = !(++a + b--)

 Naming Conventions
Each firmware programming standard has its own naming conventions for

defining variables (local and global) and function names.

• Recommendation for variable name: Avoid using

CamelCase while defining a new variable, for example:

VariableNameIsTmp. Use variable names that are short

and meaningful.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

219

It’s recommended to make limited usage of global

variables and to have a descriptive global variable

name to use across different functions. In the case of

UEFI, a global variable should start with m followed by

a variable name.

The scope of local variables is limited; hence, variable

names also need to be short.

• Recommendation for function name: The function

name should represent an action, so the name should

be something that makes it clear what it does, for

example, do_something() instead of tmp_function().

Here is the rule of thumb: variable names are often

nouns, and making function names verbs in the code

can be more readable.

void cpu_set_max_ratio(void)

{

 /* Check for configurable TDP option */

 if (get_turbo_state() == TURBO_ENABLED)

 cpu_set_p_state_to_turbo_ratio();

}

 Typedefs
Using typedef is controversial among different firmware.

As per the coreboot coding standard, it’s recommended not to use

typedefs for structures and enums, whereas in UEFI, it’s mandatory to use

typedefs and not use structs in source files.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

220

coreboot Coding Style UEFI Coding Style

struct reset_mapping {

 uint32_t logical;

 uint32_t chipset;

};

struct reset_mapping map;

typedef struct {

uint32_t logical;

uint32_t chipset;

} reset_mapping;

reset_mapping map;

The only exceptions to this recommendation are u8/u16/u32/u64

types in coreboot, these are typedef of the standard datatypes like unsigned

int/long, etc.

 Commenting
Comments are good, but over-commenting defeats their purpose. The only

purpose that commenting serves is to let the code live on for many years;

in other words, comments are helpful to understand the code at a high

level without going deep into it. The recommendation is to provide what

your code does in comment sections rather than being explicit about how

it’s doing it. Also, avoid commenting on each line, which makes code look

ugly. The coreboot style for commenting is the C89 /* ..*/. The following

is an example of the preferred approach for commenting:

Short Comments Long Comments

/* This structure will be used

to

 describe a community or each

 group within a community. */

/*

* This structure will be used

to

* describe a community or each

* group within a community.

*/

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

221

 Write a Good Commit Message
Earlier sections provided required information on how to improve the

project code quality by adopting a coding standard as per the target

firmware architecture (we discussed coreboot in detail). A good firmware

engineer not only bothers to write quality source code but also gives equal

importance to commit messages as commit messages are significantly

helpful while debugging a problem.

From my experience, folks spend a good amount of time writing the

code and reviewing the code, but when it comes to writing a commit

message, people lose their interest. Here’s a funny example of how back-

to- back commit messages lost their purpose and were meaningless:

ID Commit Date

123.. Create infrastructure to get System Time 10 Hours Ago

456.. Add API to implement time routines 8 Hours Ago

789.. Calling API 6 Hours Ago

ABC.. Add some new APIs 4 Hours Ago

DEF.. Missed to add few APIs hence adding
those here

3 Hours Ago

A1B.. Don’t know why I’m adding this code but it’s
needed

3 Hours Ago

2C3 Everything is working now with this CL 2 Hours Ago

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

222

Here are the seven golden rules when creating a great commit

message:

• Maintain a separate submit from the body with a

blank line.

• Try to limit the subject line to 50 characters.

• Capitalize the subject line.

• Don’t end the subject line with a period.

• Write the subject line in imperative tense.

• Don’t exceed the body beyond 72 columns per line.

• Use the body to explain what’s new and why it’s

changing and how.

Figure 3-12 shows a sample commit message that adheres to these

recommendations.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

223

Figure 3-12. Sample commit message following the golden rule

Figure 3-13 shows the actual commit that was submitted for a Gerrit

review after following the golden rule, as described in Figure 3-13. A

quality commit message always increases your chances to get a quick

review and required vote to merge compared to a partial or an incomplete

commit message.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

224

Figure 3-13. Actual Gerrit commit based on the golden rule

In conclusion, this section provided the basic principle behind

creating a qualified source code by adhering to a specification. It’s

recommended that all users should follow this specification without

failure. By default many development environments/studios have

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

225

integrated the checkpatch- like script that does the coding style check

and expects to run this script while creating the code changes prior to

submitting the code for review.

 Summary
This chapter helped you understand the value of infrastructure tools

while doing the firmware development. Typically, software/firmware

engineers place a high precedence on creating source code and fixing

bugs on embedded systems. Maintaining the source code and sharing

across multiple teams are also equally important in the firmware

journey. Source control management is an invaluable tool for firmware

development. This chapter provided a detailed analysis of the best possible

SCM available for open source development and its feature sets. Many

engineers use Git, GitHub, and Gerrit in their day-to-day activity but are

unable to understand the working relationship between these infra tools

and choose the best one for their needs. Finally, this chapter highlighted

the basic developers rights while working in a distributed development

environment, including the best practices to create the code changes by

adhering to the coding standard and submitting the code changes that

help your chances of getting code merged into the remote repository after

a quick review.

Chapter 3 InfrastruCture for BuIldIng Your own fIrmware

227

CHAPTER 4

System Firmware
Debugging

“Programming allows you to think about thinking, and
while debugging you learn learning.”

—Nicholas Negroponte

If system firmware development is an art, then debugging that firmware

is a fine art. The debugging process primarily depends on a thorough

understanding of the platform capabilities (for both the SoC and board

design), system architecture, and system boot state. Additionally, requires

an appropriate debug methodology to deliver a solution. Embedded

systems are highly customized to address the market needs. As the

smartphone, tablet, personal computer, and household robot markets

expand, silicon and platform designers have a challenge to provide ample

hardware capabilities to debug the platform at the many different stages

of the product life cycle. In addition, most embedded systems have a

limited dedicated debug capability due to their small form factor (SFF)

and fewer hardware revisions possible between prototype and mass

production (MP).

System failures are expected at any phase of the product development

cycle and even after the product launch while the device is in use.

Firmware, being the closest possible entity to the underlying SoC and

© Subrata Banik and Vincent Zimmer 2022
S. Banik and V. Zimmer, Firmware Development,
https://doi.org/10.1007/978-1-4842-7974-8_4

https://doi.org/10.1007/978-1-4842-7974-8_4

228

hardware, is responsible for diagnosing a defect and providing a solution

if possible. System firmware running into those embedded platforms has

its own debug architecture and methodology that needs an adaptations

based on the target hardware. For example, the system firmware debug

methodology will undergo changes from the early stages of product

development (proto, engineering validation test [EVT]) in an open case

or bench environment to the advanced/final stage (design validation test

[DVT] to platform MP) in a closed case.

The system firmware needs to inherit a variety of debugging

methodologies to overcome such dynamics to the platform hardware

design and provide SoC architecture-agnostic solutions. This functionality

may need to be implemented at the firmware architecture level to ensure

easier migration of system firmware without any visible impact on

platform debug capabilities.

At a high level, these debug capabilities can be divided into two

categories.

Hardware-assisted debugging: The key reason to use hardware-

assisted debugging methods is the nature of the defects, such as if

the detects are seen early in the boot phase, where software-based

debugging is not feasible, or there is a need to access a CPU register in a

multithreaded environment where attempting to enable software-based

debugging might result in unpredictable system behavior.

This hardware-assisted debugging can be further divided into the

following subcategories:

• Generic debugging: The kind of hardware debugger is

attached neither with any SoC or CPU architecture nor

with any OxM-specific hardware. These debug aids

are very generic and can be applicable based on the

hardware interface.

• SoC/CPU-based debugging: The hardware debugger

used in this process is very specific to the target CPU or

Chapter 4 SyStem Firmware Debugging

229

SoC architecture. No matter which target SoC or CPU

you want to debug and which debugger you choose to

use, there will always be some common features that

every debugger will offer. For instance, every debugger

will provide ways to do the following:

• Connect to the target hardware

• Download the software programming on the

host system

• Allow start, stop, and step through program

execution

• Dump memory and register contents

• ODM/OEM hardware-based debugging: This approach

is independent of the target CPU or SoC architecture.

This method will rely more on utilizing the common

hardware capabilities that OxM hardware is proving to

access the underlying hardware resource. For example,

Closed Case Debug (CCD) is a widely used method on

all Chrome platforms irrespective of the underlying

SoC architecture like ARM, AMD, or Intel. Typically,

hardware vendors use the common practice methods

across CPU designs while creating such common

hardware debuggers.

Software-based debugging: The idea is to be able to debug firmware

without any additional cost or hardware-based tools. The most widely

used debug method in the system firmware development model is to

utilize the software-based methods or firmware’s own capabilities to

debug the defects. Firmware development, debugging, and providing

resolution toward the coding issues has always been one of the most

time-consuming aspects while working in a product development

Chapter 4 SyStem Firmware Debugging

230

cycle. Debugging is sometimes a complex affair due to multilayered

communication between various boot firmware, the host CPU, and the

underlying IP firmware communication in a multithreaded environment.

The most common method that developers or debug engineers are using

to monitor the execution flow is printf. This approach may be useful in

most cases where the developer is highly aware of all layers of the system

firmware stack or when the problem is known to a single code block or

module in question. Keep track of all the different types of problems or

unexpected dependencies with other components in the firmware stack;

the system firmware should be equipped with different debug methods.

This software-based firmware debugging can be further divided into

subcategories as follows:

• Traditional breakpoints

• I/O-based checkpoints

• Serial messages or serial buffers

• Preboot environments

• Runtime debugging

• ACPI debug message or ACPI buffer

• Windows Debugger (WinDbg)

• GNU Debugger (GDB)

This chapter will present an in-depth overview of system firmware

debug techniques on embedded systems for the x86 and ARM

architectures. The topics discussed in this chapter will identify the debug

methodology used for different microcontrollers as part of the hardware

block. Additionally, it will present the different ways to debug coding

issues and show debugging techniques for complex issues such as cache

eviction, finding the local variable value in a multithreaded environment,

and techniques to help bring different components of the embedded

system stack to maturity.

Chapter 4 SyStem Firmware Debugging

231

Figure 4-1 illustrates a typical ARM-based platform block diagram with

possible hardware components associated with it. The idea here is to show

the different debug capabilities that each hardware block is permitting. For

example, the system firmware running on the ARM CPU can use a serial

UART to debug the CPU, and the embedded controller (EC) ROM can be

used to debug the EC interfaces such as the battery information, sensor

values, key sequence, etc. The physical security chip, TPM, can also have

its own serial console to debug those private registers and have special

access to the CPU and EC SPINOR as well. A hardware-based debugger

can be used over Serial Wire Debug Port (SW-DP) to allow accessing CPU

registers and memory blocks; similarly, a native USB debug interface can

be used to route CPU, EC, and TPM debug interfaces to avoid dedicated

debug interface needs on hardware. Other devices such as storage, panel,

and audio codec firmware need special driver-based access methods that

can be done using higher-level debuggers like the Windows Debugger

(WinDbg) or special debug kernel drivers for Linux-like OSs.

Chapter 4 SyStem Firmware Debugging

232

Figure 4-1. Debug view of an ARM-based platform hardware

Chapter 4 SyStem Firmware Debugging

233

Let’s start with a detailed analysis of each debugging method and its

debug aid in this section.

 Hardware-Assisted Debugging
As mentioned, the most advanced form of system firmware debugging

is utilizing the hardware capability. Typically, this form of debugging

is a combination of the hardware interface exposed as part of the CPU

architecture and a connector on board, enabling the SoC or CPU capability

using the native firmware and high-level software. In many cases, this

debugging method requires a debugger and a cross-development

environment. Based on the complexity of the problem, which requires

a debug aid, a debug engineer might decide to use this approach over

traditional ones. Every SoC vendor has their own hardware debugger and

associated software that can be used while debugging the target hardware.

The major consideration point in this approach is the cost: the cost

involved to purchase the hardware debugger, the amount of debug signals

needed to get routed on the board layout to allow hardware debugging,

and the purchasing cost of a software license to allow cross-development.

In this section, we will discuss the widely used hardware-based debug

aids in the system firmware development and debugging process. As

explained, all the hardware-assisted debug tools can be divided into three

categories.

• Generic debugging

• SoC/CPU architecture-specific debugging

• OxM hardware-specific debugging

Chapter 4 SyStem Firmware Debugging

234

 Generic Debugging
This method involves investing a higher cost into purchasing oscilloscopes

like hardware equipment along with other tools. The only consideration

point is that the cost involved here is a generic investment, so the same

hardware can be used across different embedded systems.

 Oscilloscope

A traditional misconception around debugging the embedded system

is that it always relies on the hardware rework to bring out various

probe points and attach them with an oscilloscope. Debugging with an

oscilloscope is not a scalable solutions due to various reasons.

• It requires dedicated rework to attach the probe points

to monitor the signal. The test points might be present

at different sides of the board, which makes it difficult

to handle a reworked board efficiently.

• Debugging with oscilloscope has a limited scope;

hence, oscilloscope users are also equipped with other

hardware instruments like the following:

• Digital voltmeter

• Logic analyzer

• Protocol analyzer

• The main purpose of the oscilloscope in early

embedded system development is to discover signal

anomalies. Typically, the correct expectation from

hardware validation is to probe around the design and

to get a sense of whether any anomalies exist.

Figure 4-2 provides a debugging scenario where oscilloscope-based

debugging is useful for embedded system development cycles. Prior

Chapter 4 SyStem Firmware Debugging

235

to communicating with onboard third-party components like TPM, a

touchpad, etc., using a standard firmware routine, if hardware compliance

ensures the device is meeting its power/initialization sequence guideline,

would help to avoid any anomalies throughout the embedded system

lifespan.

Benefits: Figure 4-2 is from a real-life problem that occurs early during

the boot phase where an oscilloscope is used to verify if the endpoint

hardware attached to the SoC is able to send the acknowledgment upon

receiving the CS signal.

Figure 4-2. Verifying signal integrity between Chip-Select (CS) and
Interrupt while communicating with an I/O Device.

Chapter 4 SyStem Firmware Debugging

236

 Protocol Analyzers

It’s the fact that Modern embedded system designs are getting

complicated. Devices belonging to the advanced technology families

like PCIe, USB, NVMe, SATA, I2C, and SPI are getting attached to the

motherboard design (as shown in Figure 4-1). The protocol analyzers

are the answer to performing the test solution for these computer buses

and network communication standards. The protocol analyzer is an

indispensable tool for embedded engineers.

A protocol analyzer works by capturing the data across the

communication bus in the embedded system and then displaying it using

GUI tools. With the help of a protocol analyzer, hardware engineers can

design an embedded system, while firmware engineers can develop any

new firmware module for these hardware interfaces listed earlier, and

validation engineers can test the hardware product.

A protocol analyzer is a combination of dedicated hardware and

software tools. The hardware captures the data, and the software displays

the captured data. The hardware block typically needs three-way

communication such as the following:

• Connecting to DUT: An interface that is attached to the

device under test to capture the data.

• Connecting to HOST: To show the captured data in

real time, it needs another interface to the HOST

CPU. Engineers are using the HOST machine to detect

the anomalies if any are in the bus communication.

• Input interface: This is an optional interface to attach

the external devices like USB or Ethernet, which

emulate attaching the device directly to the DUT.

Let’s take a look at some popular protocol analyzers used during the

system firmware development and debug phase:

Chapter 4 SyStem Firmware Debugging

237

• USB protocol analyzer: The most commonly used

communication protocol in the computer machines

is the USB protocol. The USB protocol analyzer is also

referred to as a USB sniffer; it is a connection between

the host computer and the DUT to capture and decode

raw bus data and event information in a human-

readable format. This information is useful to identify

the bus errors.

• I2C protocol analyzer: In embedded system design,

there are more devices that are getting attached with

the I2C protocol due to its low power and simple bus

communication. The I2C protocol analyzer can be

used to debug any communication issue where the

slave device address is not known or sees a timeout-

related error.

• SPI protocol analyzer: This is another commonly used

hardware interface in embedded systems where the SPI

protocol analyzer can be used to connect multiple slave

devices.

• PCIe protocol Analyzer: A PCIe bus is the default

de facto industry standard for any high-speed

communication between the CPU and motherboard

component. Each PCIe specification has its own criteria

in terms of speed, operating voltage, etc., to meet the

PCIe compliance test for certification. This tool is used

to monitor and interpret data transferred over a PCIe

bus and generate error reports.

Benefits: The protocol analyzer provides output in the form of a

report that covers the error type, recommendations, and directly captured

data format. Traditional test tools relied on oscilloscopes for doing such

Chapter 4 SyStem Firmware Debugging

238

compliance tests, which need manual effort and are eventually time-

consuming. To reduce the product development cost and to meet a faster

time to market (TTM), a protocol analyzer is the only logical solution. See

Figure 4-3.

Figure 4-3. USB protocol analyzer to trace USB bulk transfer

 SoC-Specific Debugging
For embedded system developers and security researchers, a SoC/CPU-

based debugger is the minimal requirement while debugging. This method

is capable of providing access to microprocessor registers and system

memory while the system is operational. There are different SoC debug

interfaces being explored to allow debugging on different hardware phases

efficiently. For example, during the early development cycle, because the

hardware is bare metal, the platform remains open chassis, which makes

debugging comparatively easier. A more sophisticated form factor design

CHAPTER 4 SYSTEM FIRMWARE DEBUGGING

239

at the later phase of the product cycle makes the debugging harder. Hence,

SoC vendors are trying to improve the debuggability and validate and test

the platform’s scope even for the product at the final MP stage efficiently.

This section will provide an idea about all the possible hardware

debuggers and their control methods across popular CPU architectures.

This debugging process on embedded systems is referred to as cross-

debugging. Cross-debugging in an embedded system is a development

model that involves two different computing machines working together.

The target hardware, which is intended to get debugged, is not supposed

to have any debug tools installed on it. For this reason, in the cross-

debugging model, the development host system is where all the required

debug tools are installed. The software running on a host development

system that provides access to the target hardware using the standard

user interface might belong to a different architecture. In a nutshell, the

debugger is a combination of hardware and software tools that work

together to provide a user interface. It lets developers harness the benefits

of the underlying CPU, GPU, and/or APU with a single program.

 Hardware Interface

In a cross-debugging model, a debug communication channel between

the host and target needs to be established on the target hardware device.

Figure 4-4 shows a typical debug setup between the host and target hardware.

Figure 4-4. Typical hardware-based debug setup

Chapter 4 SyStem Firmware Debugging

240

The debug port is the interface between the host and the DUT debug

access port. For embedded systems, the de facto standard for hardware-

based debugging and accessing the hardware registers is the Joint Test

Action Group (JTAG). The IEEE 549.1 standard defines a “Standard Test

Access Port and Boundary-Scan Architecture” for Test Access Port (TAP)

used for testing printed circuit boards (PCBs). This standard is commonly

referred to as the JTAG debug interface. Since its origin, the JTAG debug

interface has become a widely used interface for debugging the system

firmware. Figure 4-5 shows a JTAG debug probe connected to a CPU. The

JTAG interface allows access to the various systems on chip (SoC) test

access ports (TAPs) like CPU and PCH. The JTAG protocol provides a serial

interface to add to a chip device. The host system running the debug tools

can use the serial link to reach those TAPs to access memory and registers

that are running on the target hardware chip logic.

Today most of the embedded devices are equipped with a JTAG port

to support early hardware debugging and firmware development. The

JTAG-based debug port doesn’t require any special firmware programming

to access the TAPs; hence, this mechanism can be used while debugging

early CPU reset issues and early platform boot stages like SEC and PEI for

UEFI and bootblock and romstage in coreboot.

Chapter 4 SyStem Firmware Debugging

241

Figure 4-5. Debugger attached to the JTAG debug port

Depending on the specification of JTAG, typically this interface

supports four PINs as follows:

• TMS: Test Mode Select

• TCK: Test Clock

• TDI: Test Data In

• TDO: Test Data Out

In modern embedded systems, every device is equipped with

multicore CPU architecture. Hardware-based debugging is absolutely

necessary to debug CPU features such as SGX, VMX, etc. In such a

multicore boot environment, hardware debuggers should be capable of

halting all possible cores using a single JTAG scan chain. Figure 4-6 shows

a daisy-chained technique that CPU designers can use where the output of

the one core is acting as the input to the next core.

Chapter 4 SyStem Firmware Debugging

242

Figure 4-6. Daisy-chained JTAG interface for multicore CPU
architecture

Different SoC vendors are utilizing this JTAG interface to create their

own hardware debug tool.

• The Intel architecture has with different hardware

debuggers for open-case and closed-case debugging

using the JTAG interface.

• ARM architecture processors come with JTAG

support as well. Sometimes it supports another debug

interface with a lower PIN count such as serial wire

debug (SWD).

eXtended Debug Port

The traditional way to do hardware-assisted debugging on Intel platforms

is to use a proprietary 60-pin connector known as eXtended Debug Port

(XDP), an extension of the JTAG specification. XDP communications are

Chapter 4 SyStem Firmware Debugging

243

based on the physical connectivity assumption that the host machine

running the debugging tools is a closed case but the target hardware under

test is an open case. The XDP pod sits between those two layers, as shown

in Figure 4-7. The host machine running the debug tools is connected

via a USB interface. The debugging tool workflow passes through the

proprietary USB protocol to the XDP pod, where the XDP pod is designed

to translate the host tool workflow into JTAG probe mode. The DUT side of

the pod is directly connected to a specific debug port on the motherboard.

The debug port has access to all TAPs that are available in the SoC, CPU,

and PCH. This method of hardware debugging is expected to expose

more debug signals on the motherboard or silicon products; hence, these

XDP transports are primarily used in open cases or during early product

development.

Chapter 4 SyStem Firmware Debugging

244

Figure 4-7. JTAG-based open and closed case debugging

Direct Connect Interface

Over time, more sophisticated devices and smaller form factors have

challenged the SoC side to have a simpler debug hardware interface with

the same capabilities. Also, open-case debugging may not always be the

scalable solution for the product development life cycle. Direct Connect

Interface (DCI) is the solution for such problems where the assumption

is that both sides of the debugger are now enclosed systems. On the

Chapter 4 SyStem Firmware Debugging

245

host side, it still uses the same connection as XDP, but on the DUT side,

it connects to the JTAG interface using a new transport layer named

Embedded DFx Interface (Exl). Exl works as a bridge behind the USB

controller, which is responsible for passing the debugging tool workflow

to the target via the proprietary USB protocol. In this mode of debugging,

the control and data pass through the Exl bridge to gain access to JTAG and

probe mode.

The primary goal here is to allow debugging closed-case OxM

platforms like sealed tablets, smartphones, laptops, etc., where debuggers

don’t need to access to the XDP header on the motherboard. Figure 4-7

provides the high-level architectural difference in closed-case compared to

open-case debugging.

Serial Wire Debug

On embedded systems the JTAG interface is the default standard for

attaching debuggers. The major drawback in this protocol is the higher

number of signals, which may not be possible for smaller and compact

form-factor hardware. To solve this problem on microcontrollers with low

pin counts, an alternative debug interface was created known as Serial

Wire Debug (SWD). SWD uses only two wires, a clock wire and a data wire.

The connector pins are as follows:

• SWDCLK: Serial Wire Debug Clock signal sent by

the host.

• SWDIO: Serial Wire Debug Input Output is a

bidirectional signal used to carry data between the host

and debug port. The data sent by the host is getting

sampled at the rising edge and sampled by the debug

port (DP) during the falling edge of the SWDCLK signal.

Figure 4-8 provides an architecture overview of the SWD interface and

access mechanism.

Chapter 4 SyStem Firmware Debugging

246

Figure 4-8. SWD architectural overview in multicore CPU
environment

Unlike the JTAG interface, which uses a daisy-chain topology to

connect multiple debug components, the SWD interface uses a bus called

Debug Access Port (DAP). The external debug interface connects to the

DAP through a DP. There are three different debug ports available to access

the DAP.

• JTAG Debug Port (JTAG-DP): This is similar to the JTAG

interface and protocol to access the access ports (APs).

• Serial Wire Debug Port (SW-DP): This uses the SWD

protocol to access the AP.

• Serial Wire/JTAG Debug Port (SWJ-DP): This allows

external debuggers to attach to SoC using either

JTAG or SWD DP. It provides a mechanism to select

between the JTAG and SWD interfaces. It allows an easy

migration between the JTAG and SWD interfaces where

Chapter 4 SyStem Firmware Debugging

247

SWDIO and SWCLK can be overlaid on the JTAG TMS

and TCK pins.

Multiple access ports can be attached to the DAP. This APs can further

access different debug components, for an example:

• JTAG access port (JTAG-AP): This allows access to JTAG

equipped cores.

• Memory access port (MEM-AP): This provides access

to system memory, bus-based debugging, and device

registers such as AMBA Advanced High-performance

Bus Access Port (AHB-AP) or AMBA AXI Access Port

(AXI-AP) or AMBA Advanced Peripheral Bus Access

Port (APB-AP)

 Software Interface

After understanding the different hardware interfaces to connect hardware

debuggers between the host system and target device for debugging, it’s

time to take a look at different debugging tools provided by various CPU

vendors while accessing the debug ports to get into system memory or

registers.

The first step in this cross-debugging setup is to have the required

debugging tools installed on the host machine. Typically, every SoC

vendor provides the flexibility of installing the debugging tools on all

leading operating systems. Debugging the system firmware requires access

to various different debug components like CPU registers, device registers,

system memory and local variables, etc. A cross-debugging session with an

integrated development environment (IDE) would make it very simple.

On AMD platforms the debugging is done through CodeXL, whereas

on the Intel architecture, it’s the Intel System Debugger, and on the ARM-

based platform, the ARM debugger as part of ARM Development Studio is

used for debugging the embedded systems.

Chapter 4 SyStem Firmware Debugging

248

CodeXL

CodeXL is the comprehensive tool suite used on AMD-based platforms

to access the CPU, GPU, and APUs with a single program. It includes

powerful GPU/CPU/APU debugging and CPU and GPU profiling as well. It

works as a stand-alone application on both Windows and Linux OS.

After downloading the installer package on the host system and

installing the package, developers can start using CodeX. The CodeXL GUI

window should appear as Figure 4-9 with debug explorer view notes.

Figure 4-9. CodeXL debug mode: no project loaded

The CodeXL debugger will allow developers to access the runtime

behavior of the target hardware based on the control programming

buttons while debugging.

Chapter 4 SyStem Firmware Debugging

249

These controls are as follows (left to right): Debug Mode, Switch to

Profile Mode for GPU, Analyze Mode, Start, Pause and Stop Debugging,

Step In, Step Over, and Step Out.

In order to perform source code based debugging, you need to connect

the target device and load the debug symbols to map the program running

in the target device memory to its original source file. Figure 4-10 shows

the source code view after starting the debugger program as described

earlier and then hit the Break button to interrupt it program execution to

inspect the current execution state (i.e., memory view, register view etc.).

Figure 4-10. CodeXL source code view

Intel System Debugger

The Intel System Debugger is the GUI-based system software debugger

to allow access to the system state, processor registers, platform device

registers, and system memory via a JTAG-based hardware interface. The

debugger GUI provides complete control over the debugging process by

allowing the basic functions such as stepping in, stepping through, and

Chapter 4 SyStem Firmware Debugging

250

displaying memory by clicking the menu toolbar button. The GUI also

supports source code debugging after loading the symbols files of the same

program running into the target hardware memory.

Figure 4-11 shows the options to connect the target hardware debugger

after loading the Intel System Debugger. After successfully connecting

with the target hardware, the debugger command will modify from xdb_D>

to xdb_R> unless the developer uses the following control programmer

buttons to pause the execution on the target system:

These controls are as follows (left to right): Connect, Disconnect, Load/

Unload the debug symbols, Reset the target system, Start, Pause and Stop

debugging, Step In, Step Over, and Step Out.

Figure 4-11. Intel System Debugger: connecting the debugger

Chapter 4 SyStem Firmware Debugging

251

The Intel System Debugger also allows source code–level debugging

for any bootloader, even coreboot, which is an open source firmware

project. To start debugging coreboot with the Intel System Debugger,

developers need to load the symbol files manually. Figure 4-12 shows the

default loading process by selecting File ➤ Load/Unload Symbol File after

halting the target.

Figure 4-12. Intel System Debugger: loading the symbol files

After loading the necessary .debug files, you can start debugging

coreboot. Figure 4-13 shows how to debug coreboot using the Intel System

Debugger where developers can make use of the source code viewer to

view the assembly code, CPU registers, local variables, memory dump, and

access to the global descriptor table (GDT). Developers can make use of

the debug console or directly override the registers or memory values.

Chapter 4 SyStem Firmware Debugging

252

Figure 4-13. Intel System Debugger: source code debugging

Arm Debugger

Arm Debugger is capable of providing a GUI-based environment that

allows users to debug the complex SoC bringing-up scenarios and debug

multicore environments like symmetric (SMP) and asymmetric (AMP) and

Chapter 4 SyStem Firmware Debugging

253

also heterogeneous systems. Figure 4-14 provides a high-level overview

of ARM DS-5, a powerful development toolkit with an IDE for ARM-based

processors, an ARM compiler, support for a simulation model for software

development without the target hardware, streamlined tools for analyzing

software performance, JTAG debug, and trace support.

Figure 4-14. ARM-DS5: development studio

All these debugging tools are the same in terms of the underlying

capabilities such as the register access, memory access, etc. Here is a list

of common semantics used by different debuggers irrespective of CPU

architecture:

Debugger
Features

Description

Connection type all debuggers will give you the option to connect to the target

using different methods, for example single-core and multicore

access using the Jtag daisy-chain method and SwD star

topology. the idea is to halt all available cores using a single

command.

(continued)

Chapter 4 SyStem Firmware Debugging

254

(continued)

Debugger
Features

Description

Loading program most debugging sessions are focused on debugging some type

of program. this process might involve loading a program into

the target device, or the target is already loaded with a program

while debugging connects or loads the same program on the

host side to allow source code debugging. in most system

firmware debugging processes, the SpinOr already has the

program preloaded, and in the debugging process either the

SpinOr is mapped into system memory or the system firmware

is responsible for copying them into memory.

reset target being able to reset the target hardware is the minimum

expectation from a hardware debugger. allowing the target to

reset will help to restore the target to a known working state. the

Cpu architecture-specific part is the reset mechanism, which is

different across different SoCs.

run control most debuggers provide run control options such as start, pause

or stop, step in, step through, and step out. these options will

impact the state of system registers, memory, local variables,

etc.

breakpoints almost all debuggers are capable of setting breakpoints. there

are two types of breakpoints that developers can use while

debugging.

• Hardware breakpoints: Special hardware registers are used to

create logic that halt the Cpu execution.

• Software breakpoints: it’s much easier to create software

breakpoint by adding an assembly instruction.

implementing breakpoints on embedded systems is Cpu

architecture specific.

Chapter 4 SyStem Firmware Debugging

255

Debugger
Features

Description

watcher also referred to as watchpoints, this is a feature that many

debuggers provide to set a watchpoint on a particular memory

value or i/O port value. execution on the target system will

autobreak upon hitting the watchpoint either on memory or on

i/O watched addresses.

Semihosting Some custom debuggers provide this option where the target

hardware can make use of i/O facilities on the host machine.

For example, a program running on the target machine will use

the host system console out to redirect the console message.

this feature is useful while doing remote debugging where all

required outputs are coming into single units applicable on the

host system.

registers,

memory (system

memory), special

bus like pCi,

amba, etc.

these allow access toward all possible Cpus, pCh registers,

system memory, and special bus architecture. Depending on

access points, the debugger will allow you to view and modify

the system memory and registers.

Low-power mode

debugging

Debuggers are equipped with a special mode when the OS

has put the system into lower power mode and all cores

are in power-down mode. the other low-power, always-on

microcontroller aps can be used to monitor limited device

registers without impacting the device’s operational state.

Chapter 4 SyStem Firmware Debugging

256

 OxM-Secific Debugging
The major drawbacks in SoC-specific debugging are the cost of hardware

debuggers, usage of proprietary software tools (in many cases, available

only under nondisclosure agreements), and lack of applicability of these

in cross-architecture debugging. To solve this problem, many ODM/

OEMs have come up with more generic approaches that can be used for

hardware-based debugging even on cross-architecture platforms. This

section provides an overview of a few low-cost, handheld debug tools.

 AMIDebug Rx

System firmware developers have been relying on checkpoint cards to

debug early boot stages where the serial console is not available. This

debug method is tightly coupled with open-case debugging where a PCI-

based card is attached to the motherboard. AMIDebug Rx is designed as a

replacement for the PCI port 80 POST checkout card and makes port 80–

based debugging a scalable solution on closed-case devices as well.

AMIDebug Rx is built around the debug port feature on USB 2.0 EHCI

controllers. To enable this mode of debugging, system firmware is needed

to program USB 2.0 controller PCI configuration space and implement

base address register (BAR) address space for communication. Typically,

system firmware has a native USB 2.0 debug driver that uses the “USB

debug port” to transmit the checkpoint data on the device.

 XHCI Debug Capability

The XHCI debug capability (Dbc) is an open specification part of the

XHCI host controller that allows low-level system firmware debugging

over USB without any additional cost. Figure 4-15 shows the Dbc interface

connecting two systems; one system is the debug host and another is the

DUT as the debug target. After the Dbc is initialized, it will present the

Chapter 4 SyStem Firmware Debugging

257

device target as a debug device through a debug USB port. This method

can be useful to replace the proprietary UART implementation on different

motherboard designs.

Figure 4-15. Dbc connection between debug host and target

Figure 4-16 shows an example of the Dbc software architecture, which

is completely independent of the XHCI interface that is typically developed

by system software for other USB device-class communication.

Chapter 4 SyStem Firmware Debugging

258

Figure 4-16. Dbc debug software stack

The USB debug application is running as part of the debug host.

The debug host provides a USB debug capability class driver that will

communicate with the device target after the debug device is enumerated.

At a high level, the debug device can expose all its debugging capabilities

as part of the debug driver. The debug capability driver is expected to

be loaded immediately after power-on to let the system firmware debug

process use this method.

Chapter 4 SyStem Firmware Debugging

259

 Closed Case Debug

Legacy Chrome OS devices were using a custom debug header known as

Servo to access the CPU and EC serial console, SPINOR, etc., in a generic

way across cross-architecture platforms. Newer Chrome OS devices have

introduced a multipurpose secure microcontroller, referred to as H1 and

running an embedded OS called Cr50. The debugging method using Cr50

is called closed-case debug, which replaces the need to have a dedicated

servo header to allow access to the CPU, EC UART, and SPI interface on the

device under test.

The Chrome OS devices and H1 microcontroller are communicating

using a custom USB Type-C cable called SuzyQ. The debug architecture

has been built around the USB Type-C specification. Figure 4-17 shows the

debugger architecture and communication flow.

Chapter 4 SyStem Firmware Debugging

260

Figure 4-17. CCD accessing the CPU and EC UART

To put the Cr50 into the debug mode, the SuzyQ cable needs to

connect to Chrome OS devices, and users need to specify the physical

presence. The H1 includes two pins that can detect the debug accessory

signature on the CC1 and CC2 pins. After detection, Cr50 enables a USB

Chapter 4 SyStem Firmware Debugging

261

full-speed USB 2.0 slave interface that connects to the SBU pins on the

USB-C connector. Cr50 makes several USB endpoints available to the host

to communicate with the consoles. For example, Figure 4-17 shows the

access of the CPU and EC UART. In addition, Cr50 also allows access to the

H1 console.

 Software-Assisted Debugging
The most cost-effective debug method in the system firmware

development model is utilizing the software and firmware’s own

capabilities without being dependent on hardware debuggers. Adapting

hardware debuggers has its own difficulties during later stages of SoC and/

or product development where many CPU interfaces are required to be

disabled by default; hence, it needs a special firmware image to enable all

the required debug interfaces. In many cases, the timing-related issues

are not possible to replicate with a hardware debugger attached due to

an induced delay in the debug workflow between the host to the target

access points. For such reasons, firmware developers need to rely on their

traditional debugging techniques and skill sets to identify a defect and

provide a solution.

This section will highlight a few known good debugging methods that

developers are using on embedded systems and that are even applicable

across architectures.

 Traditional Breakpoint
Traditional breakpoints are the most common debugging technique being

used developers to track the code flow. While debugging the unknown

defects, every developer is trying to get ahold of the code flow without

adding any new piece of code. There are different ways to introduce

breakpoints.

Chapter 4 SyStem Firmware Debugging

262

Usage Method to Apply a Breakpoint

in

assembly

files

the most difficult code block in system firmware to debug is the

assembly instructions. the most common usage of the breakpoint in

assembly code is jmp.

the syntax for Jmp is JMP <label>. the level specifies an address to

which the code will jump upon execution. in this case, . specifies the

current address; hence, this special symbol works as an infinite loop unless

the developer overrides the program counter (pC) or instruction pointer (ip).

in C Files it’s much easier to apply the breakpoint in a C-based programming

file. Developers can either choose to generate a break on the Cpu or

execute an infinite loop.

void CpuBreakpoint (void)

{

 __asm__ __volatile__ ("int $3");

}

void CpuDeadLoop (void)

{

 volatile uint32_t Index;

 for (Index = 0; Index == 0;);

}

a debugger may be used to skip past the loop and continue the code

execution if needed.

 I/O-Based Checkpoint
Another traditional and popular debug technique for system firmware

debugging without impacting much of the program execution flow is POST

codes, also known as progress codes. The I/O ports on the X86 platform,

Chapter 4 SyStem Firmware Debugging

263

0x80 and 0x81, are used for such debugging while checkpoint cards can

be either a PCI add-in card or an onboard LED display or rely on EC to

sample the POST codes at regular intervals. Every BIOS vendor has their

own predefined error codes or POST code implementation to identify the

underlying system firmware block if executed.

Usage Method to Apply an I/O Checkpoint

in

assembly, C

files

implementing the i/O checkpoints depends on the underlying assembly

instructions due to an out operation to write into the legacy port. put

any byte value intended to write into CONFIG_POST_IO_PORT(Port

0x80) into aL.

movb $value, %al;

outb %al, $CONFIG_POST_IO_PORT

in aSL files this method helps debug runtime communication issues between the

OS and firmware layer. For example: performing sleep state transitions

(S3 to S0 and vice-versa). while debugging, aCpi source code (aSL)

writes into the debug port (address 80h) using aCpi operating region.

here is the code snippet to illustrate this operation.

OperationRegion(PRT0,SystemIO,0x80,1)

Field(PRT0,WordAcc,Lock,Preserve)

{

 P80B, 8

}

Method(D80H,1,Serialized)

{

 If(LEqual(Arg0,0))

 {

 Store(Arg0, P80T) // Write into the Port 80h

 }

}

Chapter 4 SyStem Firmware Debugging

264

For hybrid system firmware development models with integration of

closed-source binary blobs (FSP), it’s important to clearly understand the

postcode debugging model for FSP.

FSP outputs 16-bit postcode to indicate which API and inside that

which module is getting executed. The postcode is in the following format:

Bit Range Description

bit 15 : bit 12 (X) indicate the phase/api under which the code is

executing

bit 5 : bit 18 (y) indicate the module

bit 7 (ZZ bit 7) reserved for error

bit 6 : bit 0 (ZZ) individual codes

Figure 4-18 represents the 16-bit postcode usage model in FSP.

Figure 4-18. FSP Postcode block diagram

Chapter 4 SyStem Firmware Debugging

265

 Serial Message or Serial Buffer
The most trusted debugging method on embedded systems is using

printf and redirecting the output over the serial UART of the processor.

Based on the motherboard designer, there could be different hardware

interfaces that the system firmware needs to provide while making use of

serial UART. Here are some examples:

• Legacy CPU UART ports: On an X86 platform, this

makes use of 0x3F8 or 0x2F8 legacy ports to get serial

consoles. System firmware (in this case coreboot) uses

CONFIG_DRIVERS_UART_8250IO and 8-bit I/O-based

serial drivers to set up the console and read and write

operations.

• PCH UART ports: Another alternative for serial console

debugging is using MMIO-based UART controllers

on modern chipsets. System firmware (in this case

coreboot) uses CONFIG_DRIVERS_UART_8250MEM_32,

which is 32-bit MMIO access for setting up the console

for debugging.

• UART over SuperI/O: Many motherboards designed

with SuperI/O controllers also provide access to serial

ports for debugging. The developer needs to select

the applicable driver for the SuperI/O controller. For

example, the delta lake OCP platform is using Aspeed

SuperI/O and hence enabling the corresponding driver

by selecting CONFIG_SUPERIO_ASPEED_AST2400 Kconfig

(for coreboot as the underlying boot firmware).

While developers are comfortable using the serial console for

debugging and redirecting various messages to the serial console using

printf, they don’t even realize the problem that this debugging technique

often causes. Many times developers complain that the issue is seen with

Chapter 4 SyStem Firmware Debugging

266

only the release build but not with the debug binary. They are ignorant

about an unseen delay due to redirecting those debug message characters

into a serial port using native serial UART driver implementation. In

a single-threaded environment, calling a serial write method would

eventually pause the execution until every intended debug character

is successfully transmitted to the serial console. As all microcontrollers

inside the SoC are running their own firmware, such a delay might be

useful for restoring their state into a good working condition compared to

a release binary, without any delay in execution.

The best method to overcome this problem is to rely on a serial buffer

rather than a serial message. System firmware would create a reserved

memory during POST, and a native serial write implementation would

write into that memory rather than writing to the serial port. One would

argue that it is a waste of system resources if the system hangs prior to

fetching this serial buffer. The counter argument is that using some basic

hardware debugger functionality to retrieve this memory is the best

solution to reduce the gap between the debug and release system firmware

binaries while debugging a defect.

 Preboot Environment
All modern system firmware is equipped with a basic preboot environment

to provide minimum access to CPU registers, system memory, and chipset

registers prior to booting to the OS such as EFI Shell, Embedded Boot

Loader (EBL), u-root console, depthcharge console, etc. The preboot

environment serves as an important debug vehicle to narrow down an

issue between the system firmware and OS. It provides open access to

all chipset registers without connecting any hardware debugger prior

to boot to OS; hence, developers can dump the required registers in the

firmware space to ensure the recommended hardware registers have been

programmed correctly by system firmware drivers.

Chapter 4 SyStem Firmware Debugging

267

 ACPI Debug
The majority of modern operating systems are adhering to the Advanced

Configuration and Power Interface (ACPI) specification. This forces the

adaptation responsibility on the underlying system firmware as well. The

ACPI specification has introduced a whole new language called the ACPI

Source Language (ASL) to implement the required communication in

the firmware layer. Debugging this layer is more challenging because of

its usage model. For example, the ASL implementation doesn’t conform

with native C-based serial libraries that typically get used across firmware

debugging. The communication is at runtime level and hence can’t make

use of boot services data or protocols. Developers need various different

techniques to debug ACPI source code.

Method Details

Serial

console

the system firmware needs to implement a whole new serial i/O

function in aSL so that the runtime firmware drivers can make use of it

while debugging. coreboot has a unique implementation called aprt and

aDbg in ueFi to redirect any debug string to serial.

Serial

buffer

this method overcomes the limitation of the serial console

implementation due to its serialized implementation and might cause

anomalies while loading the kernel driver. the system firmware reserves

runtime memory so that both system firmware and OS aCpi driver can

access it.
(continued)

Chapter 4 SyStem Firmware Debugging

268

Method Details

Debug

using the

kernel

the aCpi Component architecture (Ca), Linux aCpi core, and aCpi

drivers can combine to generate the debug output. Kernel developers

can enable the CONFIG_ACPI_DEBUG Kconfig to start getting more

advanced options for acpi debug.

For example, use the following command-line argument to enable all

acpi debug output:

acpi.debug_layer=0xffffffff acpi.debug_level=0x2

 Windows Debugger
Windows Debugger (WinDbg) is a free, powerful debugger available as

part of Windows OS to allow debugging the kernel, user mode drivers,

and applications. It also provides the provision to load and analyze the

crash dump. WinDbg is a host-based software debugger and is capable of

working in different modes based on developers’ needs. In stand-alone

mode, WinDbg can be used to debug an application or kernel driver after

loading either the executable or the driver source files.

Figure 4-19 shows an example of how to use WinDbg to debug an

application after importing the debug symbols (PDB) from the Microsoft

debug server. WinDbg is also a useful tool to debug the DUT using USB,

a network, or a serial interface. This method is used frequently to debug

early kernel hang or blue screen of death (BSOD), a normal phenomenon

on Windows devices. Figure 4-20 shows the required configuration

changes both at the DUT and host sides to enable kernel debugging

over USB.

Chapter 4 SyStem Firmware Debugging

269

Figure 4-19. Debugging Windows applications using WinDbg

Follow these steps on the DUT side to configure for debugging:

 1. Press Windows Key+R to open the Run box.

 2. Type msconfig to enable the debug configuration.

 3. Select the Boot tab and then select “Advanced

options.”

 4. Select the Debug check box.

 5. Select the Debug Port options, either COM and

USB. In the case of a USB interface, specify the USB

target name. See Figure 4-20.

Chapter 4 SyStem Firmware Debugging

270

Figure 4-20. Kernel debug mode using WinDbg

Follow these steps on the Host side to configure for debugging:

 1. Open WinDgb.exe.

 2. Go to the File menu and select Kernel Debugging.

 3. Specify the same hardware interface and name if the

target debug port is USB.

Now reboot the DUT to start kernel debugging; developers will be able

to see the kernel modules are getting loaded using the host system debug

console.

 GNU Debugger
The GNU Project Debugger (GDB) is a command-line debug tool that runs

on Linux and other Unix-like embedded operating systems. Figure 4-21

shows a GDB session.

CHAPTER 4 SYSTEM FIRMWARE DEBUGGING

271

Figure 4-21. GDB: command-line interface

GDB offers an extensive set of features including debugging other

software or executable files, accessing the register contents to help

optimize the program, inspecting the usage of variables and altering

those values at runtime, stopping the program execution and performing

step operations, adding breakpoints, analyzing the crash, and allowing

remote debugging between DUT and host systems using either a network

or a serial interface. Independent system firmware modules are being

developed using Assembly, C, Go, and Rust-based languages and can

make most use of GDB during the early development stages to optimize

the development cost and increase the product quality.

Chapter 4 SyStem Firmware Debugging

272

 Summary
This chapter provided detailed information about the popular hardware

and software debuggers and their usage on cross-architecture platforms

while debugging a defect. It also provided some guidelines and tips on how

to identify a problem and choose the right debugging method between

hardware-assist and software-assist after considering the cost factor, the

stage of product, and the criticality of the defect. Based on my experience,

during critical debugging, debug engineers spend the most time trying to

figure out the best method to attack the problem.

This chapter was a good starting point for developers and embedded

system engineers to understand the underlying architecture of various

hardware debuggers like JTAG and SWD and their interfaces across

different CPU architectures. This information might be useful while

migrating the system firmware development across various SoC

architectures.

Chapter 4 SyStem Firmware Debugging

273

CHAPTER 5

Security at Its Core
“It takes 20 years to build a reputation and few minutes of
a cyber-incident to ruin it.”

—Stephane Nappo

Today most computing devices (laptop, smart phone, smart appliances,

etc.) are connected to the Internet, which poses challenges for the device

manufacturers because they have to think about platform security. For

any device, platform security is a combination of hardware, software,

and associated configurations. Users are always equipped with these

devices, and they are used to perform financial and/or personal data

transfers. Hence, the security specification demands continuous evolution.

Firmware, being closest to the hardware, assumes the primary role of

enforcing the security configuration because it is within the Trusted

Compute Boundary (TCB). Firmware is also responsible for abstracting

the operating system from the underlying hardware, which provides more

reason to ensure that the communication channel is secure.

This chapter focuses on designing the boot firmware, keeping security

in mind. As the industry is moving toward more cloud-driven services,

we need to ensure that the firmware communication is secure within the

firmware space and even from the OS to the firmware using trusted APIs.

© Subrata Banik and Vincent Zimmer 2022
S. Banik and V. Zimmer, Firmware Development,
https://doi.org/10.1007/978-1-4842-7974-8_5

https://doi.org/10.1007/978-1-4842-7974-8_5

274

A typical computing system handles a variety of assets owned by

users, software vendors, OS vendors, OEM vendors, and silicon vendors.

It is essential that the components in the computing system are trusted to

handle these assets, lest these assets are compromised.

The building blocks of the computing system can be categorized into

the following groups:

• Silicon or hardware (hardware): This includes the

system on-chip or micro-controllers or application-

specific integrated circuits (ASICs).

• Firmware (firmware): This is the first piece of code

executing on the hardware and is essential for

configuring and operating the hardware. Typically,

without the firmware, the hardware device will not

operate.

• Software (software): This is the component on the

computing system through which users typically

interact with the hardware. The firmware is a subset

of the software; the firmware has very limited or no

interactions with the user.

Attackers are constantly looking for vulnerabilities in all areas of a

computing system for information theft, espionage, ransom, sabotage of

nation-state security, etc. Thus, it is paramount that security objectives

are built into every facet of a computing system to ensure that complex

systems can be built from the ground up with the appropriate security

requirements. While developing a product, the security cannot be an

afterthought. Security is fundamental to any computing system and needs

to be designed into the entire stack of a computing system (hardware,

firmware, and software).

Chapter 5 SeCurity at itS Core

275

As noted, as hardware and software stacks become more robust,

attackers are increasingly researching vulnerabilities in firmware stacks. It

is more effective to hide exploitation tools such as rootkits in the firmware

because the firmware on a computing system is typically not updated

frequently and antivirus tools are unable to scan the firmware components

in a system. A rootkit in the firmware can be used to compromise

information such as memory contents, system storage contents, etc., and

can effectively alter the operation of the system by compromising the

hardware configuration and controlling the software that executes on

the computing system. There are several published reports, papers, and

articles on firmware attacks.

A secure computing system implies that the hardware, firmware, and

software can all be trusted to handle various assets as per the defined

security objectives. Starting from the foundation of the computing system,

the hardware is considered to be immutable. Attacks on the hardware

requires physical access to the computing system. Software (e.g., an

operating system, word processor, etc.) is loaded after the hardware comes

up and the firmware is executed. Continuing to build on this foundation,

assuming the hardware is immutable, it is important that the firmware

be secure to ensure that the rest of the stack loaded by the firmware is

also secure.

Facts hardware can be attacked using physical attacks such as
fault injection through voltage/thermal differentials, etc. you can learn
more about physical attacks from the bibliography.

attacks on software by exploiting bugs, etc., is beyond the scope
of this book. you can learn more about software vulnerabilities and
security from the bibliography.

This chapter focuses on aspects of the firmware security relevant for a

secure computing environment.

Chapter 5 SeCurity at itS Core

276

 Revisiting the Definition of Firmware
with a Security Mindset
Typically, a platform (as shown in Figure 5-1) consists of several hardware

components that may or may not be equipped with underlying firmware.

As discussed earlier, the components without firmware are just hardware

blocks and considered to be immutable. For the components with

firmware in them, the firmware can be obtained from various nonvolatile

storage attached to the computing platform such as system storage,

platform boot flash, component-specific flash on the board, components

in-package, or components on-die flash. During the boot or runtime of

the computing system, the hardware component powers on and retrieves

the underlying firmware from the nonvolatile storage and executes this

firmware. Once the firmware executes, any additional high-level software

like an operating system is loaded by the firmware and jumps into it. The

software stack is used by the user to interact with the hardware and access

resources on the computing device.

Chapter 5 SeCurity at itS Core

277

Figure 5-1. Block diagram of a typical platform with controllers and
firmware storage components

 Why Is Firmware Security Required?
As described earlier, there are various assets on the computing system

that are required to be protected from unauthorized access. The software

stack is used to access these assets. Hence, there is a requirement to

ensure that only a “trusted and known” software stack always executes on

the computing system. The software stack to execute on the computing

system is controlled by the firmware stack, as explained in the book System

Firmware: An Essential Guide to Open Source and Embedded Solutions.

Figure 5-2 illustrates a simple flow diagram showing the dependency. As

shown in the figure, the ROM is responsible for bringing up the firmware,

and the firmware in turn is responsible for bringing up the software.

Chapter 5 SeCurity at itS Core

278

Figure 5-2. Simple block diagram showing the flow of booting up in
a typical computing system

The ROM is considered hardware; attackers may potentially be able

to attack the ROM to control the hardware. But they may do so at the cost

of having the computing system “fail” because to get to the ROM and

tamper with it, the attacker has to conduct a deep physical attack. On the

other hand, if the attacker is able to control the software by attacking the

firmware, then they can get control of the computing system.

In addition to the assets accessible by the software, the computing

system also includes vendors’ (OEM, silicon/hardware) assets and

configurations like boot configuration, system debug configuration,

security configurations, etc., that need to be protected from adversaries.

These assets are typically controlled by the firmware executing in

the system.

Furthermore, as the software stack (e.g., like operating systems)

becomes more robust, attackers are continuously exploring other areas in

the computing system to exploit vulnerabilities. The firmware stack is the

next logical target for adversaries to hide malicious code and also get more

control of the entire system, as described in System Firmware: An Essential

Guide to Open Source and Embedded Solutions.

Thus, the security of the firmware components in a computing system

is a fundamental requirement. Without the right implementation of

proper security protections for firmware components, it is not possible to

ensure assets can be protected from adversaries, and more importantly,

potentially attackers can take over the entire system easily.

Chapter 5 SeCurity at itS Core

279

 Threats and Issues

The lack of firmware security can potentially expose the computing system

to various vulnerabilities. The risks similar to the vulnerable software stack

apply. For example, adversaries can do the following:

• Spy on activities in the computing system

• Siphon data from the computing system

• Access and control computing system remotely

• Potentially cause bodily or monetary harm (e.g., attacks

on utility grid, ransomware, etc.)

• Make the computing system inoperable

There are many examples of attackers taking advantage of firmware

vulnerabilities to attack a computing system and the environment it is

located in. A few examples are described in the “Reference” section of the

book. The general perception is that firmware is easier to attack because

firmware vendors do not develop firmware with a security mindset from

the bottom up. Furthermore, monitoring and controlling firmware security

is a difficult problem. Hence, it is important to ensure that every firmware

component in a computing system is kept up-to-date based on the

firmware vendor’s recommendations.

 Security Primer

In this section, we provide a short overview of the security concepts used

to describe the security design principles for firmware security.

Terminology

For the examples in this section, we will use two users, Alice and Bob.

These two parties want to exchange information securely. The attacker,

Eve, wants to access the information, modify the information, replay the

Chapter 5 SeCurity at itS Core

280

information, pose as an imposter, and so on, to affect the secure channel of

communication between Alce and Bob.

Integrity

Figure 5-3 shows a scenario where Alice wants to send data (D) to Bob but

wants to ensure that when Bob receives D, Bob can verify that D has not

been tampered with. This security property is called integrity, and it can

typically be achieved using techniques such as message authentication

codes (MACs). The MAC of data D is computed and transmitted along with

the data by Alice. Bob then computes the MAC of the data upon receipt

of the message and compares that with the transmitted MAC by Alice to

ensure that the integrity of data is maintained during the transmission.

Figure 5-3. Integrity property for data transfer from Alice to Bob

Confidentiality

In Figure 5-4, Alice wants to send data D to Bob and wants to ensure that

only Bob can read the clear-text data D. This security property is called

confidentiality and is typically achieved using symmetric (or asymmetric)

encryption techniques such as NIST’s Advanced Encryption Standard (AES)

algorithms. In symmetric encryption, both Alice and Bob have a key known

only to both of them. Alice encrypts D using the key to create the encrypted

message cipher_D, which is transmitted over the channel. Bob uses the

same key to decrypt the cipher_D text to get access to the clear- text data D.

Chapter 5 SeCurity at itS Core

281

Figure 5-4. Confidentiality property for data transfer from Alice to Bob

Authenticity

As per Figure 5-5, Bob wants to ensure that the data received is actually from

Alice and no one else. This is called the authenticity security property and is

typically achieved by using an RSA signature on the data to be sent by Alice.

Bob can verify the signature to ensure that the content is indeed sent by Alice.

Figure 5-5. Authenticity property for data transfer from Alice to Bob

Anti-replay

In Figure 5-6, Bob wants to ensure that the data received from Alice is fresh

and is not a playback of older data from Alice. This is called the anti-replay

security property, and it is typically achieved by sending a monotonically

increasing value along with the data sent by Alice. Bob can check if the

Chapter 5 SeCurity at itS Core

282

monotonic value property is valid for every piece of data obtained from

Alice and determine whether malicious data was injected into the channel

between Alice and Bob.

Figure 5-6. Antireplay property for data transfer from Alice to Bob

Availability

With the availability security property, Alice wants to ensure that data can

be made available to Bob whenever Bob makes a request to Alice. This

property can be designed by ensuring Alice is always available to process

requests from Bob. Aspects such as loss of connection, loss of power, etc.,

at Bob’s end that are not under control of Alice are out of scope for this

security property for Alice. See Figure 5-7.

Figure 5-7. Availability property for data available to Bob from Alice

Chapter 5 SeCurity at itS Core

283

Anti-rollback

An important security property for computing platforms with firmware

is the ability to control what version of the firmware is executing on the

platform. This is important to establish the overall security posture of the

platform. In this context, it is important to ensure that the firmware always

executes the latest version as released by the firmware owner, and the

system is designed such that a rollback to an older version of the firmware

is not possible. This security property is called anti-rollback.

Root of Trust

The root of trust is terminology used in this section repeatedly. The root

of trust can be hardware, firmware, or a software component that is

inherently trusted and is secure by design. The root of trust provides the

foundation on which security and trust is built for a system.

Threat Modeling

There are different ways to find security issues in firmware, like static

code analysis, fuzzing or dynamic testing, penetration or red team testing,

or just waiting for reports to be filed to conduct further analysis. A more

formal method for identifying potential security issues is to conduct

threat modeling. The process of threat modeling allows the designer to

identify security objectives and assets with security properties and create

requirements with security as one of the foundations. Threat modeling

helps the designer understand better the questions of “What is the

design?” and “What can go wrong?” and “How to mitigate?” and continue

an iterative process on these questions until certain objectives are met to

satisfaction.

The key question in threat modeling is “What can go wrong?” This

question is quite open ended and difficult to address for a typical designer/

engineer. To address this, many formal methods/processes to identify

Chapter 5 SeCurity at itS Core

284

what can go wrong have been created. One such example is the STRIDE

method, which stands for Spoofing, Tampering, Repudiation, Information

disclosure, Denial of service, and Elevation of privilege. More details on

the STRIDE process for threat modeling are available in the “Reference”

section of the book.

Adversary Modeling

An adversary is defined as any entity not authorized to access or modify

an asset or who works to defeat any protections on the asset. It is

important to understand the capabilities of the adversary to understand

what can go wrong during threat modeling. A rather simple adversary

(e.g., an unprivileged software adversary) with the following capabilities

(the adversary model prescribed by Intel) may not have the ability to

compromise firmware assets as this adversary is unaware of the presence

of firmware in the computing platform:

• Can read memory mapped into the address space by

the system software

• Can write memory mapped into the address space with

the write privilege granted by the system software

• Can execute Ring 3 instructions from memory mapped

into the address space with the execute privilege

granted by the system software

Therefore, it is important to understand the right capabilities of the

adversary and use them for the right threat modeling. Once the adversary

model is clear, the threat modeling then becomes a question of “What can

go wrong if the adversary has this capability?” This leads to more clarity

into threat modeling and aids in defining the right security design to

mitigate against attacks by the adversary on the assets.

A taxonomy of adversaries based on capabilities is the foundation for

any security analysis and the appropriate security design.

Chapter 5 SeCurity at itS Core

285

Security Assumptions

Assumptions are one of the key parameters of the design of security

solutions. Security design is based on mitigating attacks on assets; it is

practically impossible to list all the attacks possible on an asset to begin

with; hence, a design for security always starts with the key assumptions

on which the design is created. The assumptions can be aspects like

“physical attack on the hardware needs sophisticated and expensive

equipment that this becomes a barrier to attack,” “reverse engineering

the key for encryption will take enough time that the value of knowing the

clear text key is lost,” etc.

Approach to Security Design for Firmware

Designing the security solution for a system requires the designer to

understand various aspects of the system to provide a comprehensive

solution to address the security issues. This is the same with security for

firmware on a computing system. The following is a typical approach to

take to develop the security design:

 1. Understand the system architecture.

 2. Create the list of assumptions on which the security

design will be based.

 3. Create the list of assets in the system and their

appropriate security properties.

 4. Create the threat models for the assets.

 5. Create security design to address the threat models.

Obviously, in the context of security, a designer can never provide

a perfect solution. The security design is not constant and has to

continuously improve by iterating over steps 2–4. As the designer learns

more about new attack vectors that modify the assumptions and the threat

Chapter 5 SeCurity at itS Core

286

models, new solutions/technologies have to be created or devised to

address the new findings.

This section creates an understanding of the security for firmware

based on the previous approaches.

• Understanding the components in a system that

contain firmware

• Understanding the threats in scope

• Understanding the assets

• Describing security design concepts that address the

threat models and continuously assess the design

 Platform Configuration for Firmware
This section will review the basic framework of a computing platform that

includes firmware for various components in the platform.

A typical computing platform consists of a motherboard with the

following components on it:

 – One or more system-on-chip (SoC) components

 – One or more microcontrollers

 – Multiple sensors

 – Flash storage and memory devices

 – Cooling units, power supply

 – Input/output devices, etc.

The microcontroller and SoCs themselves may have SRAM in them for

firmware or software to use for execution. In addition, the microcontroller

or SoCs may also have flash memory in them either as on-die flash

memory or on-package flash memory. As described in previous chapters,

Chapter 5 SeCurity at itS Core

287

the firmware for the computing platform is resident either in the flash

storage on the board or in on-die/on-package flash. Depending on where

the firmware is at rest, where the firmware executes at runtime, etc., the

security properties for the firmware is determined.

For example, let’s assume that a certain piece of firmware has

confidentiality properties, implying that the firmware should be protected

from being visible in the clear to anyone except the components that are

allowed to execute the firmware. In this example, consider if the firmware

is resident in the flash on the motherboard; then this firmware has to be

encrypted because an adversary with physical access to the system will be

able to “dump” the content of the flash on the motherboard using simple

tools such as a “dediprog.” On the other hand, if the firmware was resident

in the on-die flash, it may not be necessary to encrypt the firmware

because it is deemed to be more difficult to do a physical attack on the die.

 Firmware with Security Mindset in a
Computing System
Before we get into the details of what security constructs are required for

firmware security, let’s first understand what attacks are in scope for the

discussion and how to address them. Figure 5-8 shows attack vectors for

various firmware components in the platform. Let’s look at each of them.

Chapter 5 SeCurity at itS Core

288

Figure 5-8. Block diagram showing attack vectors in scope for
discussion

In Figure 5-8, for the callouts marked as 1 and 4, the firmware is

assumed to be loaded into a controller and executed locally in the

controller. For the callouts marked 2 and 3, the firmware is stored at rest in

either system storage or flash storage.

Attack vectors in scope for firmware at rest do the following:

 1. The firmware at rest needs protection from getting

tampered with by any skilled or unskilled software,

system software, or firmware. It ensures that any

attacks like illegal or unwanted firmware updates

are prohibited from tampering with the firmware to

brick the system.

 2. The firmware at rest must be able to detect physical

attack on the firmware in the storage. An attacker

with physical access to the system may be able to

modify the firmware directly in the storage; while

Chapter 5 SeCurity at itS Core

289

preventing this attack can be expensive for typical

computing systems, being able to detect the attack

is sufficient to ensure that illegal or unwanted

firmware cannot be loaded into the system.

Attack vectors in scope for firmware at runtime do the following:

 1. The firmware in runtime must be protected from

skilled or unskilled software/system software or

firmware tampering the firmware at runtime. This

ensures that the firmware executes as expected

and does not cause the system’s security to be

compromised.

 2. The firmware in runtime must be protected from

physical attacks; this ensures that attackers cannot

use physical side channel attacks, probe attacks,

etc., to modify the runtime firmware and cause the

system security to be compromised.

To address these attack vectors, the following security properties are

typically attached to each firmware:

• Authenticity: This security property ensures that

firmware that executes on a computing system is

always coming from the right authority.

• Integrity: This security property ensures that firmware

that executes has not been tampered with by an

attacker.

Chapter 5 SeCurity at itS Core

290

• Confidentiality: This security property ensures that

firmware cannot be obtained in clear text while at rest

or during execution. Typically, this security property is

required for firmware executing in computing systems

such as set-top boxes, etc., as the cost of compromise

of the firmware can lead to media content being

compromised.

• Availability: This security property ensures that

firmware is always available, so the system can function

even if the firmware complies with the previous

security properties but may have bugs causing the

system to malfunction or stop functioning.

• Access control: This security property ensures that only

the authorized firmware can access certain resources,

and other components in the computing system cannot

access these resources. For example, the fingerprint

sensor data can be designed to be made available

only to the security engine firmware and no other

component in the system.

Typical technologies used to accomplish the previous security

properties are secure boot, trusted execution environment, firmware

resiliency, security assurance, etc. The rest of this section highlights the

design constructs that are typically used and how to achieve security for

firmware components in a computing system.

Before we delve into the security design constructs, let’s look at a few

resources required in the hardware to achieve the security properties

highlighted earlier. Figure 5-9 shows the hardware resources available to

an embedded engine in a computing system. Note: similar resources may

be available to the firmware for the application processor as well.

Chapter 5 SeCurity at itS Core

291

Figure 5-9. Typical resources available to an embedded engine in a
computing system

Let’s understand these components in detail.

• Read-on memory (ROM): This is typically known as

Boot ROM as well. It is a nonvolatile memory that

contains the boot code, fetched and executed by the

controller immediately after coming out from reset.

Ideally, the boot ROM contains a minimal code block

that requires the controller to come to life. A simplest

embedded system might only have ROM that is

sufficient for the platform to complete all the required

hardware initialization prior to loading the high-level

software without the overhead of a post-production or

in-field firmware update.

Chapter 5 SeCurity at itS Core

292

Facts National institute of Standards and technology (NiSt)
publications NiSt Sp 800-147, “BioS protection Guidelines for
Clients,” and NiSt Sp 800-147B, “BioS protection Guidelines for
Servers,” address the issue of protecting the integrity of a platform’s
host processor boot firmware and its update mechanisms.

• Memory: A volatile storage is required to complement

the memory-restricted nature of hardware controllers

while coming out from the reset. This is required for the

runtime execution of the firmware. There are two main

types of memory: static RAM (SRAM) and dynamic

RAM (DRAM).

• SRAM: This type of random access memory uses

flip-flop circuitry to keep the data. Unlike DRAM, this

memory type doesn’t require periodic refreshing. It

is typically used for the cache and internal registers

in powerful microprocessors and on several other

microcontrollers.

• DRAM: This is most widely used as main memory

in the computer system. This type of random access

memory uses memory cells (made of a tiny capacitor

and transistor) for storing the data. DRAM has to be

refreshed periodically to avoid data leaking due to slow

discharge of the capacitors. DRAM memory is much

cheaper compared to the SRAM and hence more often

used on computer systems.

Chapter 5 SeCurity at itS Core

293

Facts By the nature of its operational model, DraM is a soft target
for security attack. rowhammer is one such security exploit that
took advantage of memory cells to possibly change its contents
by repetitive neighboring cell access that caused leakage in
their charge.

Figure 5-10 shows the different types of DRAM memory types being

used on the embedded system.

Figure 5-10. Types of memory used in embedded systems

Chapter 5 SeCurity at itS Core

294

• Storage: In computer systems, storage devices are

referred to as secondary memory. The information

stored persists across multiple power-cycle, power-

off, etc., scenarios. It’s also important to highlight

here that, based on the boot criticality of the firmware

components, there are many firmware versions that

reside even in the storage devices like eMMC, NVMe,

etc. The nonboot critical firmware needs to get loaded

into the hardware controller using OS software driver

models rather than pre-boot communication methods.

For example, the AsoC Linux kernel driver is capable

of registering the digital signal processing (DSP) and

firmware.

• Crypto: Hardware-based cryptographic primitives are

required to accelerate or isolate assets from the other

resources. The objective of crypto in firmware space

is to increase the security while ensuring seamless

firmware updates for the in-field devices. The firmware

update process involves downloading a binary image,

which may include code, data, configuration and/

or calibration value, authentication information, and

other product details, etc. Now a security threat always

exists on the asset since the update operation has

initiated; hence, the cryptographic algorithms provide

the means to protect the privacy of the content and also

verify the integrity and authenticity.

• I/Os: Logically, at a high level, an embedded system

can be considered to be separated into two blocks, the

lower layer and higher layer. Figure 5-11 illustrates the

high-level system view to understand the I/Os.

Chapter 5 SeCurity at itS Core

295

Figure 5-11. High-level system view

In the lower-layer section, the I/Os are typically the external

components in the motherboard that are initialized/configured by the

firmware for making it accessible by the higher-level software/applications.

• Fuses: These are the control knobs tuned by the

hardware vendors (including SoC manufacturers) to

configure the engine at manufacturing. Depending

on the design and system requirements, hardware

vendors allow fuses to be programmed and configured

by the underlying firmware. These fuses are for

debugging, manufacturing, managing feature enabling/

disabling requests, etc. Efficient use of these fuses

while debugging to trace any underlying hardware

communication. Additionally, these fuses help adhere

to the security recommendation during manufacturing.

The fuses allow configuring a particular feature without

revamping the hardware controller in the factory.

There are tools to configure the fuse to satisfy the

end-user requirement. For example, the airport kiosk

Chapter 5 SeCurity at itS Core

296

system utilizes the Intel Next Unit of Computing (NUC)

without any specific use case for keeping the Image

Processing Unit (IPU) enabled. Hence, the system

integrator would have to leverage the advanced tooling

to turn off IPU features on the target device.

 Access Control

The concept of access control was defined earlier. The goal of access

control is to ensure that assets are protected from other components

in the system. For example, in a bank, the safe/locker is not allowed

to be accessed by any one other than a group of employees. Similarly,

in a computing system, access control is used to block access to

unauthorized users.

In the context of firmware security, access control in a system is

used to determine which entity can access the storage area (i.e., the

firmware at rest area), access the memory in the controller, access assets

of the controller, and so on. This access control design ensures that only

authorized components that are identified by construction are trusted

by the controller, and the firmware executing on the controller will allow

access to resources within the firmware. This concept is used as a security

design concept to protect the resources of the firmware on a controller

or system.

 Secure Boot or Firmware Authentication

As discussed earlier, the typical boot of a system starts with the ROM,

followed by mutable code loaded from the storage such as firmware,

firmware applications, and/or software depending on the controller or

computing system. The concept of Secure Boot ensures that every piece

of mutable code loaded from the storage is securely verified before it

is executed. Secure verification includes verifying the authenticity of

the firmware, integrity of the firmware, security version number of the

Chapter 5 SeCurity at itS Core

297

firmware, and any confidentiality properties of the firmware. To prevent

attackers from tampering with the firmware, it is required that Secure

Boot be rooted in the hardware. Secure Boot ensures that attacks on the

firmware at reset are now addressed.

Consider the high-level Secure Boot flow shown in Figure 5-12. The

ROM is considered as a root of trust for the Secure Boot flow. As the ROM

is considered equivalent to hardware, by design it is difficult to attack the

ROM and requires the attacker to have physical access and use special

equipment to conduct an attack on the ROM. All modern and future

systems are adding capabilities to thwart physical attacks. You can learn

more about these new techniques in the “Reference” section of this book.

The ROM as the root of trust is responsible for starting the Secure Boot

trust chain by securely verifying the first piece of mutable code read by the

ROM from the storage for execution.

Figure 5-12. High-level Secure Boot flow

The system diagram for a typical implementation of secure boot is

shown in Figure 5-13.

Chapter 5 SeCurity at itS Core

298

Figure 5-13. System diagram for a typical Secure Boot
implementation

The following are the different components that are part of the Secure

Boot system architecture:

• High security module (HSM): The responsibility of this

module is to store the private key used for signing the

firmware binary and never exposing the private key to

any user. Typically, this module is kept in a restricted

area, and only authorized users are allowed to use

this system to sign the firmware binary. This is one of

the key assumptions for the security of a Secure Boot

flow. If the signing key is compromised, then the only

option is to use a different private key, and this requires

potentially providing new computing systems into

the field.

• ROM: As described earlier, the read-only memory is

considered as the root of trust.

Chapter 5 SeCurity at itS Core

299

• Fuses or one-time programmable region: This

component is required to hold the hash of the public

key part of the key pair generated by the HSM. Storing

the hash of the public key in the hardware gives the

binding between the secret private key used to sign

the firmware binary and the system on which the

verification is conducted.

• Storage for replay protection: The security version

number is different from a typical version number.

The security version number is updated only when a

security issue is fixed, whereas the firmware version

number can be updated if a new feature is added or a

functional bug is fixed. This storage in the hardware is

used to provide the minimum security version number

that can execute on the system. This number is updated

by the firmware during the firmware update process.

• Firmware in storage: To ensure that the firmware is

verified correctly, a header or verification record or

manifest is attached with the actual firmware binary.

This header typically contains the security information

used to verify the binary.

• Header: The header contains information such as

the actual public key used to verify the signature;

the result of signing the firmware binary (called the

signature) using the private key at the HSM location;

hash of the firmware binary to ensure that firmware

is not tampered; the security version number of this

firmware in the storage; and so on. All the information

in the header is used by the verifier to ensure that

the firmware binary is exactly what the manufacturer

intended from a security perspective.

Chapter 5 SeCurity at itS Core

300

As discussed in Figure 5-12 with the high-level Secure Boot flow, the

ROM starts the Secure Boot chain by verifying the first piece of firmware

read from the storage. The ROM reads the firmware binary and the header

and then uses the contents of the header to verify the security properties of

the firmware binary. Let’s go through a simple process:

 1. The hash of the public key in the header is

compared with the hash in the hardware storage.

This ensures the binding between the HSM and the

hardware. Only if this step is successful, go to the

next step.

 2. The signature in the header is verified using

the public key in the header. Only if this step is

successful, go to the next step.

 3. The hash of the firmware binary is compared with

the hash in the header; if successful, go to the

next step.

 4. The security version number in the header must be

equal or greater than the security version number in

the hardware; if successful, go to the next step.

 5. All the security properties are properly verified, so

continue with the next stage of boot.

In the previous flow, if any of the steps fail, then depending on the

design of the system, the boot of the system can fail, and the system can be

designed to go into recovery.

As discussed earlier, the goal of secure boot is to ensure that any

firmware binary executing on the controller/system is verified before it can

be loaded for execution. The mechanics of the Secure Boot process can be

applied to any controller with its own ROM or a root of trust in the system

that controls the security for the controller.

Chapter 5 SeCurity at itS Core

301

 Security Assurance

As we discussed earlier, the security of firmware is a task that is not

something that is ever complete; it is an evolving problem as more features

are added to the firmware and also as the following occur:

• Sophisticated attack vectors become more accessible to

everyone.

• New techniques are created to attack firmware. Given

this, it is important for any firmware vendor to have a

solid security development life cycle (SDL) plan. This

plan must include the following:

• Architectural analysis: Security starts with

understanding the architecture and what problem

is actually being solved. Hence, it is important to

constantly reevaluate the architecture when significant

functional changes are added to the firmware. This will

help you understand if existing security assumptions

continue to hold or new assumptions need to be

created.

• Code reviews: The security architecture and design

are only as good as the code that is developed to

implement the architecture. Hence, an open source

firmware development approach will help address this

along with detailed code reviews to be conducted with

the design and development teams to ensure that all

security assumptions and dependencies are properly

documented and implemented.

• Code scan using tools: While code reviews are great,

some fundamental problems in the security of the

design or implementation can be caught using tools

Chapter 5 SeCurity at itS Core

302

such as BlackDuck, etc. The goal of these tools is to

analyze the code and binaries to determine common

security vulnerabilities and provide alternatives.

• Security validation: This is an important step in the

SDL process. Functional validation ensures that

the firmware functions as expected and it is easy to

create test cases to cover all the functional aspects

of the design. The test cases help unearth bugs that

can be fixed. But these functional tests do not test for

the “security” of the firmware. The goal of security

validation is to create tests to break the security

architecture aspects of the design, break the security

assumptions, try to expose assets, and so on.

For example, let’s assume a design in which a user is required to

provide a login and password to access the firmware options. Functional

testing would ensure that an user can provide the login and password

correctly and ensure that a wrong login/password combination does not

allow access. However, typical functional validation does not capture

aspects such as the following: What happens if the user provides a login

that is longer than allowed? What if the user provides special characters as

a login or password? And so on. Some of these conditions can potentially

cause misbehaviors in the system and expose security vulnerabilities.

Security assurance is an important aspect of the life cycle of firmware

required to ensure that vendors are constantly monitoring and improving

the security of the firmware.

 Firmware Update and Resiliency

Another important construct required to ensure the security of the

firmware is the ability to keep the firmware updated to the latest version

that has all the known security issues addressed. One of the key issues

Chapter 5 SeCurity at itS Core

303

firmware vendors face is how to deploy the updates; a full-fledged system

is required with a server to push the update, and the firmware on the

targeted device must accept the update and verify the update before

writing the update into the storage where the firmware is at rest. However,

these issues are being addressed comprehensively lately because of the

concerns of attacks one can launch with compromised firmware.

Security for the firmware update process is required to ensure that

unauthorized firmware is not written into the storage and potentially cause

the system to brick. Verifying the update pushed by the server is similar

to the process described earlier. Similar steps are used to ensure that the

firmware modules received from the update server are valid and can safely

be written into the storage area.

While the security for the update process ensures that firmware

pushed by the update server is valid, there can still be nonsecurity issues

with the pushed update. For example, functional bugs that have escaped

validation can cause the system to brick or stop functioning. Hence,

it is imperative for the security of the system that the firmware design

considers resiliency. NIST 800-193 spells out the requirements for a design

that considers firmware update and resiliency. Modern computing systems

are designed to meet the NIST 800-193 requirements.

 Summary
The firmware on a system is critical for the operation of a system. Attackers

are constantly looking for not only new methods but also new entry points

into the system, and the firmware (being a critical foundation of a system)

is one entry that must be protected with strong defenses. Yes, attackers will

constantly be looking to identify vulnerabilities and exploit them, but the

right foundation for security is that firmware vendors have to be nimble to

address the exploits and ensure the systems are not compromised and also

resilient.

Chapter 5 SeCurity at itS Core

304

This chapter highlighted different security constructs such as

assurance, secure boot, update, and resiliency that are used to create the

foundation for firmware security. Ideally you will find a suitable space

in your product development journey to be able to apply this knowledge

when implementing your own system firmware to ensure the firmware

is secured. You can learn more about the technical details of security

advisories in the book’s “Reference” section.

Chapter 5 SeCurity at itS Core

305

CHAPTER 6

Looking at the Future
of System Firmware

“If everything you try works, you aren’t trying hard
enough.”

—Gordon Moore

The evolution of system firmware over the last three decades has involved

inheriting lots of complexity to support the underlying hardware and

complement the limitations in legacy operating systems in a more flexible

way for device manufacturers. This has resulted in unnecessary complexity

in the entire system firmware boot process, requiring significant

development cost and time to restructure the firmware design. This trend

of designing complex system firmware has continued, without realizing the

current end-user demands, offerings from modern hardware, and more

competent operating systems that have overcome such legacy limitations.

Boot firmware does not necessarily need to do a lot work, as it used to do

in the past. Rather, future system firmware should have boundaries with

end users and industry needs.

System firmware goals will evolve in the future, and if we could foresee

those goals and align the designs of all available boot firmware (BIOS),

then this would improve the ecosystem of future firmware. There are

© Subrata Banik and Vincent Zimmer 2022
S. Banik and V. Zimmer, Firmware Development,
https://doi.org/10.1007/978-1-4842-7974-8_6

https://doi.org/10.1007/978-1-4842-7974-8_6

306

several key areas inside the system firmware premises where the industry

is looking to improve firmware design. The fundamental principles that

future system firmware will focus on are as follows:

• Performance: In the modern computing era, billions

of devices are connected to the Internet and doing

trillions of data transfers per second. Turning a device

off to perform a system update is too much to ask for.

For example, if a Facebook or Google server has a

scheduled reboot and the system restoration time is

way higher then expected, it would significantly impact

users and business. Hence, the minimum ask from

future firmware would be an instant boot.

• Simplicity: For any solution to get accepted by the wider

community, it has to be simple enough that it doesn’t

expect too much from its users. Since the origin of

the boot firmware, it has been maintained by a closed

set of communities. Hence, it’s easy to implement

system firmware with a high-level programming

language and build a specification around it. But this

results in resistance in the open community to accept

such complex solutions and adapt to them. Also, the

community wants to explore the best methodology

to get rid of such complex solutions; hence, the idea

is to use a basic programming language and software

engineering methods, rather than being attached to

something that needs specific skill sets.

• Security: Over the years system firmware has been the

method to provide access from the operating system

(OS) to the hardware layer due to its operational

privilege level. ODM/OEMs are using legacy

techniques like System Management Mode (SMM)

Chapter 6 Looking at the Future oF SyStem Firmware

307

and Option ROM (OpRom) to perform platform device

initialization, which remains unnoticed by the high-

level monitoring layer like OS-driven security policies.

This might expose security risks. The expectation from

future hardware and SoC would be to define security

into its core so that firmware can avoid having such

legacy implementations, which not only increases

the firmware footprint but also might increase the

security risk.

• Open source: Any future firmware development and

maintenance is expected to be in an open and inclusive

environment, rather than limited to a few companies

to make the decision on behalf of everyone. Having

visibility into open source is kind of a blessing in many

ways. It helps to resolve the trust issue that is normally

there with any proprietary system firmware. Open

source generally helps users adapt to a specification and

provides a continuous feedback path for improvements.

Reducing development cost is also another key benefit

of open source for device manufacturers.

• Exploring hardware: In the past, firmware has

been designed to ease the communication with

the underlying hardware. Hence, when it comes

to designing an efficient platform with reduced

firmware space and an instant boot experience, device

manufacturers usually pick the easiest solution by

introducing a pre-initialized hardware controller. This

results in a higher bill of material (BoM) cost and puts

an extra burden on end users. But the real exploration

would be on utilizing the existing CPU capabilities

and offerings in hardware or refactoring the hardware

Chapter 6 Looking at the Future oF SyStem Firmware

308

capabilities to design a better platform with combined

hardware-firmware innovations, without increasing the

platform BoM cost.

This chapter focuses on such key forward-looking firmware initiatives

that have been built around the principles discussed earlier.

• Designing LITE firmware: The real need of firmware

is to perform essential hardware initialization to boot

the platform to the operating system. But the firmware

boundary has grown so much in the last decade that

sometimes it’s referred to as “beyond BIOS.” This

chapter will cover how to design a LITE boot firmware

to shrink the firmware boundary.

• Designing a feature kernel: The book System Firmware:

An Essential Guide to Open Source and Embedded

Solutions provides details about the payload and its

usage model. The only purpose that a typical payload

serves is to pick the correct boot services like console

input, console output, and block device or network

device to boot to the OS (and additionally perform

some crypto-related operations to verify the kernel

partitions prior to loading). In addition, there could be

some ODM/OEM-specific customization to allow users

to configure the BIOS. The feature kernel concept is to

utilize the kernel as part of the payload to reduce the

firmware boundary and use early OS-like environments

to further boot to the OS.

• Design multithread boot firmware: In the past, boot

firmware has been designed to work over a single-

threaded environment. Modern and future processor

designs are more capable of supporting more logical

Chapter 6 Looking at the Future oF SyStem Firmware

309

processors. But because of the legacy design of

system firmware, it never works in a multithreaded

environment to provide better opportunities for future

boot firmware and reduce platform boot time.

• Innovative hardware design: Today system firmware

looks more complicated because of the underlying SoC

and/or hardware design. Ideally, the system firmware

should just be responsible for performing basic CPU

and chipset initialization, and the rest hands over

the control to the operating system. But because of

several factors such as not having enough memory to

access hardware resources early in the boot process

and the need to set up temporary memory to continue

the hardware access, such cyclic dependencies in

hardware design limits the innovation in firmware and

tries to make system firmware act as legacy firmware.

This chapter will discuss the possible innovation

in hardware or SoC architecture to make the future

firmware get rid of this legacy.

 Designing LITE Firmware
Basic Input/Output System (BIOS) was originally meant to perform basic

hardware (CPU and chipset) initialization during the boot process and

when booting to the operating system. Over time, to support complex

SoC and platform designs, the BIOS has also become reasonably complex

and mammoth in nature. Today, the de facto successor to BIOS is Unified

Extensible Firmware Interface (UEFI), which is also known as “beyond

BIOS.” Having said that, there are some ecosystem concerns due to its

closed source nature.

Chapter 6 Looking at the Future oF SyStem Firmware

310

Because of the increasing concerns of security, complexity, and closed

firmware, the industry is heading toward platform development under

the open source umbrella, by an initiative driven by the Open Compute

Project (OCP, https://www.opencompute.org/). This effort has led market

leaders to also adopt open source firmware development approaches.

This provides an opportunity for the OEM/ODM to pick a suitable

BIOS for their platform from a wide range. As discussed earlier in this

book, there are currently three main successors to the BIOS: coreboot,

Slimboot, and UEFI.

Typically closed source BIOSs for client and server platforms have the

following shortcomings:

• The firmware has become an operating system.

• The system firmware is archaic, complex, and often

quite buggy.

• Closed source firmware is hard to maintain and can’t

forward/backport features and fixes.

• Vendor-specific tools are used in the case of closed

source firmware.

• Closed source firmware has a large number of features

and complexity required to support shrinkwrap

operating systems and the vagaries of ‘compatibility’

therein.

• Closed source firmware has more challenges in

robustness, ability to debug, and flexibility in both

build and deployment.

OEM/ODMs are looking forward to overcoming these barriers by

adopting open source firmware approaches. Open source firmware provides

the opportunity to achieve feature parity, support for many generations of

equipment, and curating both unified and adaptable toolkits.

Chapter 6 Looking at the Future oF SyStem Firmware

https://www.opencompute.org/

311

coreboot is the most popular and is an extended firmware platform, built

on the principles of open source software; it provides key advantages from

having various CPU architecture support available by default to all OxMs.

As a firmware developer, what matters most is how to initialize various

hardware intellectural property (IP) blocks in order to boot a SoC and

hand it over to the operating system (OS). This process involves writing

various components/IP initialization code for different SoC. But today

any system firmware, be it open source or closed source, has unnecessary

or redundant and complex blocks to perform hardware initialization.

The majority of those complex and redundant hardware initialization

blocks were introduced when operating systems were not as advanced as

today and there was not much hardware knowledge to perform platform

initialization. Here are some examples:

• PCI enumeration and resource allocation: All boot

firmware does PCI enumeration and resource

allocation before booting to the operating system. In

reality, PCI enumeration was required in the BIOS

space only when the operating system was not capable

of doing it. It was late 1999 when Linux had limitations

to performing PCI device initialization, and the BIOS

was responsible for the PCI configuration.

• Multiprocessor initialization: Boot firmware does CPU

core initialization, brings APs out of reset, and runs

some basic tasks such as range register programming

with DRAM-based resources. But because of the BIOS

topology of running in a single-threaded environment,

it never uses those APs to run tasks in parallel. In the

past, operating systems were unable to perform SMP

initialization. Hence, it was kind of a requirement to

perform those initializations in the boot firmware

space. But today Linux-like kernels are capable of doing

SMP setup at an early stage of OS booting.

Chapter 6 Looking at the Future oF SyStem Firmware

312

• Provide runtime services: System firmware has

provided runtime hooks to operating systems using

SMI handlers. Recently, many security researchers

have strongly discarded this practice of using runtime

services via SMI.

• Storage block initialization: At the end of boot firmware

initialization, it’s expected that firmware should

initialize the block devices like UFS/emmc, NVMe/

SATA or USB to boot to the kernel. This means that

system firmware should have the required storage

drivers in it to perform those initializations. Having

those advanced drivers inside the firmware space

makes it more complex and increases the maintenance

costs as well. For example, to boot from NVMe, one has

to add NVMe driver support in the firmware space. But

in general that support has already been added into

Linux-like kernels by default.

With the previous examples, it’s clear that there are many redundant

blocks that exist inside system firmware today. Different individuals

writing the same initialization code for different firmware blocks will

increase the enabling time, as well as the validation time and the review

time. All SoC vendors have to support all possible BIOS solutions; hence,

we’re not gaining anything by doing repeated work in system firmware.

Rather, it is increasing the liability of validating it across platforms.

Chapter 6 Looking at the Future oF SyStem Firmware

313

 Design Principle
Let’s focus on implementing solutions with respect to the open source

firmware space, i.e., coreboot. (Similar designs can be made for UEFI and

Slimboot as well in the future.) coreboot is an extended firmware platform

that delivers a lightning-fast and secure boot experience on modern

computers and embedded systems. Figure 6-1 provides a simplistic view

of the coreboot flow and other population boot firmware so you can

understand the size impact of each BIOS phase and where this philosophy

of LITE firmware can fit in.

Figure 6-1 and 6-2 provide the typical boot flow of the boot firmware

for any SoC platform and the estimated size for each stage. Without having

a detailed understanding of its boot flow and where the majority of boot

time and boot firmware footprint lies, it would be difficult to design the

LITE firmware solutions.

Note the boot flow between coreboot and the Slim bootloader are
similar, where the bootblock can be referred as Stage 1a, romstage
as Stage 1B, and ramstage as Stage 2; hence, the estimated size for
those stages are almost identical.

Chapter 6 Looking at the Future oF SyStem Firmware

314

Figure 6-1. Typical coreboot flow with size of each boot stage

Chapter 6 Looking at the Future oF SyStem Firmware

315

Figure 6-2. Typical UEFI flow with size of each boot stage

Chapter 6 Looking at the Future oF SyStem Firmware

316

The takeaway from these figures is that ramstage as an individual stage

is consuming around 80 percent of the total coreboot volume, and DXE is

similar in the case of UEFI.

Today both firmware and the OS have an equal share of complexity in

their domains. As we are interested in open source firmware development,

let’s discuss coreboot and the possibilities for designing LITE firmware.

• Ramstage has grown over time from a simple PCI

configurator to a complex firmware programming block

that does something beyond its basic needs and thus

creates redundancy.

• Operating systems have also grown in capacity over the

years. Hence, the things that were not possible decades

ago in the OS and relied on the system firmware are

now very much possible to perform using the kernel

layer itself.

• The OS for sure can handle more than what

ramstage does.

• Hence, we are now at an “intersection point” of the

ramstage and operating systems.

• So, the real question is, do we really need a ramstage-

like programming block?

The answer is simple: no, we can adopt a “LITE” model.

The system firmware needs to explore the possibility of being LITE

where the proposal is to have a minimum functional firmware block with

an original boot firmware methodology to boot to the operating OS. The

basic agenda of a LITE system firmware would be removing the redundant

firmware initialization and making as much use of the operating system as

possible.

Chapter 6 Looking at the Future oF SyStem Firmware

317

Over the years ramstage in coreboot and DXE in UEFI have grown

beyond their boundaries, and system firmware space has been a bit of a

dumping ground to put more OS-like services and applications.

Many features provided by ramstage are not required to be explicitly

added into ramstage and don’t have a real product need. For example:

• SMM: The limited usage model should depend on CPU

vendors and product design requirements.

• Support S3/Sleep: Modern computing systems have

support for connected standby, lucid sleep, or runtime

suspend where such underlying legacy Sleep/S3

support can be moved from being mandatory to

optional based on the platform design.

• Runtime services: This depends on the targeted

operating system; hence, there is no point in publishing

more runtime services than the OS is actually able to

consume.

Using the LITE model, the system firmware can perform the limited

initialization of chipsets components that are getting used “only” in

firmware space to reduce the firmware boundary.

Mandatory PCI device enumeration and resource allocation:

Figure 6-3 illustrates the current PCI device enumeration and resource

allocation flow, where ramstage for example in the case of coreboot is

responsible for picking all PCI devices from the available PCI tree and

performing the predevice initialization and early chipset initialization,

specifically to compute and assign the bus resources, enable devices

on the bus, and finally initialize the devices on the bus. This iterative

process of the PCI tree parsing and resource assignment and finally device

initialization can take a significant amount of time in the boot process.

This scenario is also the same with UEFI and Slimboot, being responsible

for doing the entire PCI tree enumeration irrespective of being used in the

firmware space or not.

Chapter 6 Looking at the Future oF SyStem Firmware

318

Figure 6-3. Typical coreboot PCI enumeration process in ramstage

Chapter 6 Looking at the Future oF SyStem Firmware

319

In the LITE firmware design principle, the system firmware only needs

to initialize and enable PCI devices that are getting used in the firmware

space and perform the minimum operations prior to transferring the

control to the payload or OS.

To adhere to the LITE firmware development strategy on coreboot, a

new tag of “mandatory” was added into the PCI tree generation process

to skip all the unnecessary device initialization in the firmware space and

save a significant amount of system firmware boot time.

During static parsing of the PCI tree structure in coreboot in the LITE

firmware model, all PCI device initialization will be skipped unless the

“mandatory” keyword is tagged with that PCI device.

The following is the pseudocode from a coreboot reference where a

minimum PCI enumeration can be achieved by adding the additional

“mandatory” keyword checks to save on boot time. CONFIG_LITE_FIRMWARE

is the token being used in the coreboot open source firmware to identify

the platform using the LITE system firmware development model.

/*

 * Probe all devices/functions on this bus with some

optimization for

 * non-existence and single function devices.

 */

for (devfn = min_devfn; devfn <= max_devfn; devfn++) {

 if (CONFIG(LITE_FIRMWARE)) {

 dev = pcidev_path_behind(bus, devfn);

 if (!dev || !dev->mandatory)

 continue;

 }

 /* First thing, set up the device structure. */

 dev = pci_scan_get_dev(bus, devfn);

}

Chapter 6 Looking at the Future oF SyStem Firmware

320

The following example from the X86-based QEMU emulation shows

the reduction in PCI enumeration effort significantly in coreboot by

performing only the mandatory PCI device initialization (host bridge and

LPC in the following example), which is the minimum system firmware

requirement to boot to the payload and further to the OS. The mandatory

PCI device list might differ between platform designs, hence making it

flexible for platform owners to add the minimum device initialization list

as required.

Figure 6-4 explains the proposed LITE firmware-based PCI

enumeration to avoid complexity and further reduce the firmware

footprint and improve system boot time.

In the following example, the system firmware will perform the

initialization and resource allocation for two devices alone (the devices are

tagged with the “mandatory” keyword), compared to all possible devices

in the existing model.

Chapter 6 Looking at the Future oF SyStem Firmware

321

Figure 6-4. Adopted LITE firmware model in coreboot for PCI
enumeration

Minimum CPU initialization: In a multiprocessor environment,

the system firmware brings up only a single bootstrap processor after

the power-on reset. Later in the boot process, the system firmware

also needs to bring up all the applicable logical processors to perform

simultaneous operations in parallel. Because of the limited knowledge in

previous generation operating systems for bringing up all of the logical

processors, it needs to rely on the system firmware. Typically, ramstage

(in coreboot), like an advanced stage, is responsible for performing this

multiprocessor (MP) initialization operation. It’s also a fact to consider

Chapter 6 Looking at the Future oF SyStem Firmware

322

that each operation to bring up the other logical processor into action

has its own latency as per CPU vendor design guide. Hence, the possible

solutions to ensure minimum CPU initialization are as follows:

 – Based on the real needs, design the system firmware to

perform operations in a multithreaded environment.

 – Early initialization of the processors during boot.

 – Deferring initialization of all of the processors in

the kernel.

Reduced ACPI table creation: ACPI stands for Advanced

Configuration and Power Interface. The purpose of ACPI is to describe

the underlying hardware and its interface to the operating system to let

you understand that the hardware is present and how to configure it. It

controls hardware actions such as the power button behavior, system sleep

states, etc.

In the existing model, the creation of ACPI tables have been tied to the

PCI enumeration using the dynamic ASL generation method; hence, the

BIOS may perform any of the two possible operations as follows:

Option 1: Attach the required ACPI dynamic generation process to the

PCI tree device marked as mandatory as follows, where ChromeOS needs

an ACPI device for the embedded controller and hence attaches the device

to the LPC interface:

device domain 0 mandatory

 device pci 1f.0 mandatory

 chip ec/google/chromeec

 device pnp 0c09.0 mandatory end

 end

 end # LPC Interface

end

Chapter 6 Looking at the Future oF SyStem Firmware

323

Option 2: Let the system firmware completely get rid of the ACPI

creation process and try to utilize the kernel driver rather than relying on

the underlying runtime firmware services. There is a kernel command-line

parameter named acpi.

acpi: Many hardware platforms ship with buggy or out-of-specification

ACPI firmware, which may cause unspecified problems. If the platform

is randomly powering off or failing to boot due to potential ACPI-

related issues, disabling ACPI is recommended in such scenarios. To

potentially get rid of the additional complexity of pulling the required

ACPI infrastructure into the prior boot stage, one could also explore this

acpi=off kernel command to skip ACPI creation in the system firmware.

The downside of this approach is that the system loses its capabilities to

communicate with the system firmware, and the user space application or

driver needs to create direct access to the underlying hardware to retrieve

some key information like battery status, power-off, shutdown, etc.

Figure 6-5 illustrates the modified coreboot boot flow using the LITE

firmware development model.

Chapter 6 Looking at the Future oF SyStem Firmware

324

Figure 6-5. coreboot boot flow with adapted LITE firmware model

Chapter 6 Looking at the Future oF SyStem Firmware

325

Figure 6-5 shows how this LITE model benefits the open source system

firmware development approach. This approach to LITE system firmware

development on coreboot could be applied to UEFI firmware development

as well. In the case of UEFI, it would reduce the DXE stage by keeping only

the required DXE modules to boot to the BDS stage.

 Conclusion
• A reduction of ramstage (in coreboot) eventually

reduces the code by 50 percent.

• Improved boot performance is able to reduce the boot

time by an additional ~500ms.

• This effort might help the OEM/ODM to reduce the SPI

Flash size and eventually optimize the platform bill of

material cost.

• Given that operating systems are more sophisticated

and feature-rich, this approach of moving more of

the traditional firmware flows into the OS kernel will

provide a more balanced approach long term.

• From a platform engineering team perspective, there

will be very minimal firmware support required if this

proposal is implemented successfully. There is a good

amount of resource savings.

• People do not have to learn a specific boot state

machine/PCI enumeration process/payload or

complex protocol/services-oriented firmware

development tricks. Instead, they can focus on the early

kernel boot process.

Chapter 6 Looking at the Future oF SyStem Firmware

326

 Designing a Feature Kernel
The payload is an additional firmware entity used in system firmware to

boot to the operating system. Boot firmware can be used with various

payloads to provide a complete system firmware solution where ideally

a payload’s job is to find the required boot services like console input,

console output, and block device or network device to boot to the OS. In

addition, there could be some ODM/OEM-specific customization like a

pre-boot environment to launch an application to certify the bootloader or

diagnose the underlying hardware.

But the problem is that all payloads are different in nature from each

other, and they have their own expectations from the boot firmware.

Hence, there is no unification possible to boot to the operating system,

although the targeted OS might be the same in all these cases.

Having a different payload for the same boot firmware creates various

problems while developing system firmware:

• The underlying boot firmware needs to provide various

interfaces as expected by different payloads, resulting

in interfaces that are unused without any consumer of

any service on the payloader side, resulting in higher

development and validation time.

• The storage device is required to boot the OS from

firmware therefore, the payload is likely to have such

hardware support. For example: next generation

block device support like UFS and NVME been added

recently. Often this support is backported from the

equivalent upstream kernel driver into the more

limited firmware environment.

Chapter 6 Looking at the Future oF SyStem Firmware

327

• There is a need to custom hardware initialization flows

in the payload prior to the OS due to the lack of full OS

system services and features. For example, the payload

requires a boot beep for error reporting in case of

faulty hardware. To implement the requirement either

a dedicated hardware circuit or an audio driver in

payload is required to generate an audio tone.

• The maintenance of the payload infrastructure is also

difficult due to limited open source community support.

• The typical payload size is from 1.5MB (compressed) to

about 6MB, which is eventually sitting in SPINOR and

will result in additional BoM cost.

Figure 6-6 provides the overview of modern system firmware with

different payloads, booting to the OS.

Figure 6-6. coreboot boot flow in a current scenario

Chapter 6 Looking at the Future oF SyStem Firmware

328

Look at the “Boot Partitions” block 1, highlighted in Figure 6-6: it is the

initial kernel block, typically sized about 4MB. During the platform boot,

the payload tries to locate the initial kernel block from the boot media

(NVME, eMMC, SATA, UFS, etc.) and then verifies it prior to loading it into

the main memory. The initial kernel block is then run over memory to

perform the root file system mount, followed by the boot kernel picking up

the runtime kernel block to complete the boot sequence.

 Design Principle
The idea of a “feature kernel” is to avoid having a dedicated payload

attached to the BIOS to boot to the OS and possibly simplify the system

firmware boot flow by using the LITE firmware model plus the feature

kernel to further reduce the firmware boundary and improve the system

booting time.

Figure 6-7 illustrates the proposed “feature kernel” boot flow with an

open source firmware model, where the initial kernel block (about 4MB)

would be part of SPI Flash, and the bootloader would load the boot kernel

from SPINOR and run over the memory to perform the root filesystem

mount, followed by the boot kernel to pick the runtime kernel from

the bootable media. In that process, the payload dependencies can be

removed as well.

Chapter 6 Looking at the Future oF SyStem Firmware

329

Figure 6-7. coreboot boot flow with adapted LITE firmware and
feature kernel

 Conclusion
The key benefits of this idea are as follows:

• In the past, the system firmware booting from SPINOR

was considered as the Trusted Computing Boundary

(TCB) and the OS partitions stored into block devices

were always outside of this computing boundary. But

this approach would bring the kernel within TCB,

which means

• The firmware update implementation using the

power of the boot kernel could be more efficient

than ever in this model.

Chapter 6 Looking at the Future oF SyStem Firmware

330

• It is more scalable for future usages (i.e., support for

advance boot devices/specs is native).

• There is no need to create a special hardware

interface or driver support in the payload/

bootloader to bypass the audio codec to implement

special solutions like boot beep, etc.

• There is a reduction in system firmware complexity

to create dedicated interfaces for various payloads.

• We can avoid the additional porting effort of any

new controller and interface in the payload from

the kernel as and when required.

• There is a possible reduction of SPINOR size and

dedicated development effort to create support for

a newer SoC in the payload.

 Design Multithreaded System Firmware
In the modern-day world, where usage of IoT devices (like automotive

and navigation devices and home appliance devices) and client devices

are rapidly increasing, performance is key. Users are expecting to see

the device operational as soon as they press the power button or hold

the device.

The increase in the complexity of compute, software updates, and the

I/O subsystem has created new challenges to meet customer expectations,

such as a better user experience with a faster boot to the OS, providing an

instant-on experience.

As part of the enhanced user experience (UX), many applications using

advanced computer systems now demand an instant system bootup time.

A faster system response time is a key performance indicator (KPI) used

by OEMs/ODMs for their product requirements for almost all computing

Chapter 6 Looking at the Future oF SyStem Firmware

331

sectors today, such as personal devices like modern smartphone/tablet/

laptop, healthcare equipment (ultrasound, defibrillators, and patient

monitor devices), industrial devices (robots change arms) and MAG

systems (firing a missile, fail-safe redundancy on airplanes, or similar

single function devices), and office/home automation devices.

Figure 6-8 shows the typical client platform (x86 architecture based)

boot path where the entire boot process is in sequential order. The average

system boot time is expected to be less than 500ms from the G3 system

state (no power applied) until the operating system (OS) hand-off, which

includes the pre-power (All rails and clock stabilization), prereset (power

sequencing), and post CPU reset (boot firmware and payload) boot path

components. But in reality the system boot time is way beyond 500ms

today (average ~2sec).

Figure 6-8. Typical x86 based client platform reset flow with all BIOS

Chapter 6 Looking at the Future oF SyStem Firmware

332

It is important to note that the most time-consuming phase of the

total boot path is the execution of the system firmware as mentioned in

Figure 6-8, hence making it a critical phase to optimize to provide a fast

boot experience.

Another point to consider is that an increased number of I/O

subsystems attached to the motherboard, and every subsystem having

its own device firmware, poses increasing challenges for product

manufacturers to ensure periodic firmware updates with an instant system

power-on experience.

Figure 6-9 shows a typical OEM platform design that more than 15

independent IP/device FW updates take place when the OS initiates the

FW update. As the FW update takes place during the boot path where

the entire boot process is in a sequential order, it’s impossible to meet

the expectation that the system firmware would be able to complete all

device (SoC and Platform) firmware updates (measuring FW components,

verifying FW components, loading FW into device, reading firmware

version back to ensure successful FW update) within the regular time

window, which is expected to be less than 500ms to 1sec from the G3

system state (no power applied) to the operating system (OS), hands off.

Chapter 6 Looking at the Future oF SyStem Firmware

333

Figure 6-9. Typical OEM client platform design with possible
firmware update requirement

As the entire BIOS boot takes place in a single-threaded environment,

running only over the Boot Strap Processor (BSP) (even after multicores

are available typically at ~650ms since CPU reset), it results in an indolent

wait time on the BIOS side. Eventually this results in discrete and serial

platform initialization where each independent IP/device initialization/

update is waiting for its execution time or turn. This entire process makes

the platform slower while operating firmware updates and creates a

bad user experience. Subsequently, this makes users afraid of accepting

firmware updates, meaning the users will push out firmware updates

without knowing the criticality of the update that might potentially fix

some platform security issues.

Another use case is Windows 10X where the OS is moving to an AB

servicing model and the operating system will update itself while running

(i.e., while running OS version A, it will provision a new version B),

Chapter 6 Looking at the Future oF SyStem Firmware

334

versus today’s scenario with the blue screen and percent countdown.

Microsoft is now constraining the preboot time for doing BIOS/capsule

updates, so having a speedier reboot is necessary to meet these emergent

UX requirements.

All device manufacturers are looking toward an instant platform boot,

without bothering whether the platform has mundane or bulky devices

attached to it, whether the boot process is going through a firmware

update initiated by the OS, etc. But the legacy boot process always runs in

a single core, irrespective of modern-day CPUs being multicore processors

in nature, where two or more cores are capable of running in parallel to

execute tasks. This in turn forces the firmware code to run sequentially,

leading to a slower boot time and ineffective usage of processor power and

system resources to initiate SoC components, and/or platform devices

update/initialization process, and thereby resulting in a higher platform

boot time and ultimately a bad user experience.

 Design Principles
The proposal is to enhance the boot process by adding concurrency to

it by isolating boot functions and platform configurations, which will be

executed with the boot firmware as the context master. Additionally, the

method proposes configuring the platform components with additional

cores for running concurrent processes. Finally, this method will also be

applied in the process of firmware updates during the boot phase.

This section will explain the necessary changes in system firmware

flow to create a multithreaded system firmware boot solution that

overcomes the limitations mentioned in the previous sections.

Chapter 6 Looking at the Future oF SyStem Firmware

335

Multithreading is the ability of a CPU to execute multiple processes

concurrently. In the multicore platform, it is the responsibility of the BSP to

perform multiprocessor initialization to bring application processors (APs)

out from reset. In a multiprocessor (MP) environment, each processor can

perform independent execution of assigned tasks.

The design principle is to provide an option to ensure a multithreaded

environment where the BIOS can perform its tasks concurrently. To design

a multicore environment, there might be some potential hardware or CPU/

SoC architecture changes also required; the details can be found in the

section “Innovation in Hardware Design.”

The assumption is that the platform has made some hardware changes

to support this system firmware design change proposal.

• This method decouples unidirectional communication

flow in the boot firmware to allow independent BIOS

tasks to perform over parallel threads.

• This method provides options for boot firmware to

execute its tasks in a parallel thread-safe mechanism

(without worrying about core synchronization between

multiple firmware back-and-forth calls).

• This method provides flexibility to perform

multiprocessor initialization early in the boot flow to

maximize CPU resource utilization by the BIOS.

• The hardware design change proposal provides

significantly larger temporary memory at the

prememory phase in terms of the SRAM or LLC cache

to execute independent tasks over dedicated cores

in parallel in absence of physical memory or prior to

DRAM initialization.

Chapter 6 Looking at the Future oF SyStem Firmware

336

• This method implements a high-level synchronization

construct as a “monitor” type inside system firmware

to ensure tasks are getting performed in multiple cores

and remain in sync to avoid any duplicate access. The

“monitor” construct ensures that only one processor at

a time can be given access to a task.

• Using the MONITOR/MWAIT instruction inside system

firmware reduces latency between the core operations

and wake time from idle.

• Use a semaphore to access potential shared resources

inside the bootloader in normal mode.

Figure 6-10 illustrates the modified firmware boot flow of a system to

leverage the new design proposal.

In the existing design, no tasks are getting executed over cores other

than the BSP, although Aps are available and active later in the boot flow.

In this proposed model, the BIOS is designed to work in a multithreaded

environment, where all possible cores are available and active right at the

reset break or within a very short time after reset.

Chapter 6 Looking at the Future oF SyStem Firmware

337

Figure 6-10. Existing versus proposed system firmware flow with
multicore environment

To run multiple operations concurrently using the available hardware

and CPU capacity, first the system firmware needs to split all the possible

tasks required to boot to the OS into multiple subtasks and assign them

over multiple cores to run in parallel. Hence, it needs a semaphore for

providing a convenient and effective mechanism for core synchronization.

Chapter 6 Looking at the Future oF SyStem Firmware

338

Here are the design principles to build this multithreaded system

firmware logic:

• Implement monitor/mwait logic inside the system

firmware to avoid idle time while resting the core, upon

completion of a task and prior to assigning a new task.

• A single task is attempted by a single core at a time, and

a task is assigned to the core if both the task and the

core are available and free, respectively.

• To implement this solution, some data variables are

needed, as shown here:

 a. Shared region: In the multicore environment,

to avoid synchronization issues, a shared data

region is needed where the interprocessor

communication (IPC) variables will be stored.

Task state variables will also be located in

such shared data regions for allowing core

synchronization.

 b. Task state variable: A “task” and “state” data

structure is created with “n” number of planned

tasks in it.

 i. Each task has its state tag to notify it if a task

is waiting for the actual core to get assigned,

if the task is in progress, or if the task is

completed.

 c. Initialization code: Prior to entering into the

critical region where each core will perform the

independent hardware controller initialization

task, the initialization code assigns all those

tasks to its default state.

Chapter 6 Looking at the Future oF SyStem Firmware

339

 d. Scheduler: Create a scheduler inside the system

firmware to assign the waiting tasks to the

available cores, where “mwait” initially treated

as “nop” and “monitor” would assign the next

task instruction and immediately change the

task state to “in progress.” Once a core is done

with its assigned task, it will mark the task state

as “done” and wait an “mwait” for the next

available task assignment.

 i. Respective cores would execute those

assigned tasks and update the shared data

variable. This step continues until all tasks

are migrated to “done” states.

 e. Task assignment: The idea here is to perform

only the independent boot tasks to perform

over a multithreaded environment, whereas the

BSP would still continue to perform the typical

hardware controller interdependent tasks.

Chapter 6 Looking at the Future oF SyStem Firmware

340

Figure 6-11. Schematic view of a monitor

• Prior to booting to the payload or operating system,

all the available cores would need to reach a

synchronization point, where the BSP would monitor

the shared data region to check the state of the assigned

tasks and the current condition of the cores. Ideally,

all the tasks should get tagged with “done,” and all the

available cores should park into the “mwait” state and

remain in active state.

Chapter 6 Looking at the Future oF SyStem Firmware

341

The book System Firmware: An Essential Guide to Open Source and

Embedded Solutions demonstrates a case study done on an x86 platform

using this multithreaded system firmware design principle to perform

the dynamic optimization of the system boot time without any additional

hardware modification.

 Conclusion
The following are the key benefits of this idea:

• This innovation helps to nullify legacy system firmware

assumptions of a serialized boot or even static

multithread boot to optimize the boot time. Rather,

this method proposes an opportunistic platform boot

by predicting when to initiate a multithreaded boot to

optimize the boot time.

• This proposed solution might be useful for running the

entire system firmware update shown in Figures 6-9

and 6-10 using all the available core’s capacity. This

will significantly improve the firmware update latency

problems and ensure that the system never goes out of

service.

• A proof-of-concept trial of informed multicore

boot has been produced. It demonstrates the boot

performance savings compared to the normal firmware

boot method. (refer to the book System Firmware:

An Essential Guide to Open Source and Embedded

Solutions for more details)

Chapter 6 Looking at the Future oF SyStem Firmware

342

 Innovation in Hardware Design
Today system firmware is more complicated because of the underlying

SoC and/or hardware design. Ideally the system firmware should just be

responsible for performing the basic CPU and chipset initialization and

then handing over control to the operating system. But because of several

factors, like not having enough memory to access hardware resources early

in the boot process and the need to set up temporary memory to continue

the hardware access, such cyclic dependency in hardware design limits

the innovation in firmware and tries to make the system firmware act like

legacy firmware.

This section discusses such possible hardware limitations in the

existing CPU and platform design and identifies the possible solution to

design a simplified version of the system firmware to either reduce the

boot boundary or optimize the platform BoM cost with a more complex

hardware design.

Refer to Figure 6-12 to understand that the existing system firmware

boot flow on any architecture has a significant dependency on the physical

memory available during the early boot phase.

Take for example the x86 platform, where the legacy CPU design or the

modern SoC design doesn’t have a dedicated pre-initialization memory

controller such as static RAM (SRAM), which is available in other CPU

architectures like ARM. But as per the system firmware design, it needs

memory after reset to perform chipset initialization using advanced

firmware programming logic, which needs a basic programming

infrastructure like a stack, heap, and functions to make the firmware

development more modular. Rather, on the x86 platform, to mitigate

the problem of not having ample memory at reset, the SoC architecture

proposes using a shared cache between the various underlying hardware

blocks inside CPU/SoC, as per Figure 6-12.

Chapter 6 Looking at the Future oF SyStem Firmware

343

Figure 6-12. Cache architecture on x86 architecture

Because LLC is bigger in size than other available caches, it should be

used in the absence of real physical memory or SRAM on x86 platforms.

The process of cache being used as temporary memory is known as cache

as RAM (CAR). This has its own complexity with several model-specific

registers (MSR) that need to be programmed. Also, this programming

recommendation might evolve generation after generation due to

improved the cache architecture. Because CAR or temporary memory

is quite limited, the entire chipset initialization can’t really rely on this

memory; rather, this limited memory is being served as the minimum

memory required to set up the stack and initial programming requirement,

until the time physical memory is initialized. Typically in the system

firmware boot process on the x86 platform, early stages like bootblock and

romstage in coreboot, SEC and PEI phases in UEFI, Stage 1A and Stage 1B

in Slim Bootloader, are just for the preparatory work being done to mitigate

the design limitation. Eventually this limitation also results in delaying the

initialization of the security controller that is sitting deep into the SoC/

CPU hardware layer and unable to communicate with the host CPU in the

absence of a good amount of physical memory.

Chapter 6 Looking at the Future oF SyStem Firmware

344

 Design Principles
The proposal is to create a platform design by combining the hardware

and firmware-centric innovations. A simple system firmware design has a

bottleneck on the platform hardware design. This section will highlight a

futuristic system firmware design where the firmware-level complexities

are being nullified by the hardware design to make a system firmware that

is more generic, simpler, and robust.

 Hardware Design Principles

Ideally, having a simplified SoC design will also reflect the simple system

firmware design, without added complexity and so much preparatory

work needed to perform basic chipset initialization even using the LITE

firmware design principle.

This section will provide several hardware modification proposals for a

simplified boot process.

Scenario 1:
Figure 6-13 provides a SoC design with an on-chip SRAM controller

and reasonable numbers of SRAM attached for initializing CPU and I/O

components and allocating resources without really depending on the

DRAM initialization sequence.

Chapter 6 Looking at the Future oF SyStem Firmware

345

Figure 6-13. Proposed SoC design with on-chip SRAM

These kinds of SoC designs are costly compared to a DRAM-based

hardware design, and at the same time the available SRAM memory is

supposed to be limited. On a typical x86-based client and IoT platform, to

complete the entire static device initialization (without off-board graphics

or a network card), the system firmware requires about 32MB of memory,

which is possible to accommodate using such hardware design. SRAM has

a lower access time, so it’s faster compared to DRAM; hence, it’s efficient to

meet the low-level access latency requirement on the boot firmware.

Chapter 6 Looking at the Future oF SyStem Firmware

346

Scenario 2
Figure 6-14 provides an alternative proposal, where there is no need

to increase the BoM cost by introducing SRAM like costly and dedicated

hardware components into the SoC design, instead utilizing the existing

SoC design and providing an additional interface to access the DRAM

controller by an auxiliary processor sitting in the SoC.

Figure 6-14. Proposed SoC design with auxiliary processor initialize
DRAM at prereset

Chapter 6 Looking at the Future oF SyStem Firmware

347

The auxiliary processor at the prereset stage would utilize its boot ROM

to perform self-initialization and fetch the auxiliary patch firmware from

the IFWI layout (present inside the SPINOR or block device) to initialize

the DRAM controller and train the memory prior to the x86 cores hitting

reset. After the CPU reset, the system firmware running on the host CPU

won’t necessarily perform that temporary memory setup; rather, it’s able to

perform flat access to physical memory.

 Firmware Design Principle

The proposed hardware design changes described earlier in scenarios 1

and 2 would help to simplify the job of system firmware and also help to

nullify the legacy requirement where the system firmware has to perform a

few additional steps just to mitigate the problems described.

The following sections will provide the modified system firmware

design to accommodate either of the hardware change proposals.

Figure 6-15 provides a high-level boot flow of the system firmware

where either SRAM is available or an auxiliary processor like PSP in the

AMD SoC reset architecture can be used to perform memory controller

initialization.

 1. Upon powering on the system, the auxiliary

processor present inside the SoC will start execution

immediately from its ROM. This is followed by

fetching the updatable patch from the IFWI layout.

The reason for having such an updatable patch

into IFWI is so that it’s easy to provide bug fixes

if required and send new patches over firmware

updates during system use in the field.

 2. The auxiliary processor patch firmware has the

required foundation code to initialize the DRAM

memory controller and train the memory device.

Chapter 6 Looking at the Future oF SyStem Firmware

348

 3. After DRAM controller initialization, memory is

available at pre-CPU reset. The auxiliary processor

will pass the available memory base and limit to

the bootloader. Upon CPU release, the bootloader

will use that memory range to create the system

memory layout.

 4. At CPU reset, it breaks those legacy assumptions

about x86 boot flow where the setting of temporary

memory is no longer required. Hence, several boot

phases can be removed with these assumptions:

 a. On the coreboot side: There is no need to have a

dedicated bootblock, romstage, and postcar because

all these stages are just meant to do the preparatory

work prior to or during DRAM initialization.

Chapter 6 Looking at the Future oF SyStem Firmware

349

Figure 6-15. Reduced system firmware boot flow with pre-initialized
DRAM at reset

 b. On the UEFI side: The SEC and PEI phases can be

eliminated as memory can be default initialized.

All the necessary pre-work can be done in the DXE

phase directly.

Chapter 6 Looking at the Future oF SyStem Firmware

350

With memory available at reset, the reset vector can

now be patched at DRAM mapped memory, rather

than SPI mapped memory. The auxiliary processor

loads the OBB image from SPINOR into DRAM prior

to hitting CPU reset. The system firmware will start

executing the code from the ramstage in coreboot

(as per Figure 6-15) or DXE (as per Figure 6-16).

Figure 6-16. Reduced UEFI boot flow with pre-initialized DRAM
at reset

Chapter 6 Looking at the Future oF SyStem Firmware

351

 5. This process will help to reduce the firmware

boundary, and the system firmware is now

responsible for doing only the recommended

chipset and CPU initialization. The BIOS will create

its own system memory map as shown Figure 6-17

and break the barrier between different boot stages

with the only goal to perform the minimum and

mandatory operations to boot to payload.

Figure 6-17. UEFI DXE being the first stage after CPU reset

 Conclusion
The key benefits in this idea are as follows:

• Provide flexibility in system firmware design and don’t

really focus on implementing all the boot phases.

• Reduce the system firmware boundary by one-third,

which eventually results in high optimization of system

boot time and reduction of the SPINOR footprint.

Chapter 6 Looking at the Future oF SyStem Firmware

352

• Having an auxiliary processor doing DRAM

initialization prior to CPU reset and copying the

OBB BIOS region into DRAM would provide a better

opportunity to enforce the hardware assistant security

rather than building security blocks using the system

firmware.

 Summary
This chapter provided an overview of the futuristic aspects of system

firmware. It also explained several examples of its possible usages and

all the opportunities to design better system firmware considering

simplicity, performance, security, and open source philosophy. After

reading this chapter, you should have a general understanding of the

uniqueness of system firmware and hardware design. The idea here is to

make sure you understand where the industry might be heading in the

future. System firmware design in the future might expect to have such

requirements as a minimum for any boot firmware working on any SoC/

CPU architecture. The common traits across all these application examples

of future system firmware design is the need for instant platform boot with

reduced functionality and effective use of system resources without any

additional cost of platform hardware. This chapter may also be useful to

break the assumption about any BIOS or system firmware design where

application engineers or designers might consider all the boot phases

to be mandatory, rather to make it clear that those stages are flexible.

Firmware designers could choose to pick the correct boot flow as per their

platform design and hardware needs, to do meaningful and minimum

tasks in the system firmware design to make life simple during the product

development life cycle and after-life support as well.

Chapter 6 Looking at the Future oF SyStem Firmware

353

 APPENDIX A

The Evolution of
System Programming
Languages
A system programming language is a programming language that is

used to create system software. In the context of this book, we will

refer to this type of language while developing firmware. Firmware

development requires you to understand the underlying hardware and

CPU architecture. Firmware development techniques should focus on the

optimal usage of system resources while performing critical operations

such as using memory or system power.

Here are some characteristics of system programming languages:

• System programming languages have a great deal of

knowledge about the underlying CPU architecture. It is

intended to create a machine-level language that will

execute on the target hardware.

• The programming languages created by a system

programming language can operate in a memory-

constrained manner.

© Subrata Banik and Vincent Zimmer 2022
S. Banik and V. Zimmer, Firmware Development,
https://doi.org/10.1007/978-1-4842-7974-8

https://doi.org/10.1007/978-1-4842-7974-8

354

• A system programming language can directly use the

system memory, CPU registers, and I/O components

without any access restriction.

• In a firmware development project, more than one type

of system programming language may be used. For

example, a coreboot project is a combination of C, C++,

assembly language, ASL, etc.

• Typically, these system programming languages are

intended to create their own libraries that allow access

to different hardware components such as input/

output and even to specific CPU architecture.

This appendix will walk you through the journey of system

programming language where applicable to system firmware

development. It will underline the need for a modernized approach in

the future.

 The History of System Programming
Languages
Originally, system firmware was developed using assembly language.

Assembly language is used for one-to- one resemblance of the mnemonics

and machine language. The mnemonics are specific to CPU architecture;

hence, assembly language needs another system program, named

Assembler, to translate the assembly language statements into the

machine language as per the target CPU architecture.

Assembly language was first developed in the 1950s. It eliminated the

need for programmers to use a first- generation programming language

and remember numeric codes and how to calculate addresses. Here are

some advantages of assembly languages:

Appendix A The evoluTion of SySTem progrAmming lAnguAgeS

355

• Typically, the majority of CPUs are powered on with

a memory-constrained environment; hence, running

early programming using an assembly language

doesn’t require any specific infrastructure like other

high-level system programming language demands.

For example, running a C program makes use of the

stack, which is set by the low-level assembly program.

• Assembly language, being a lower-level programming

language, allows direct access to the hardware

depending on the nature of the operations.

By the 1970s, assembly language was starting to be replaced with the

evolution of high-level system programming languages that reduced the

need for handwritten assembly codes with compiler-generated code. The

knowledge of low-level hardware instructions no longer was essential

as the high-level programming language introduced an abstraction that

could remove the barrier of writing CPU architecture-specific code while

performing an operation. For example, writing memcpy is much simpler in

a high-level system programming language rather than implementing it in

assembly.

Today, the scope of assembly language is limited only to early

bootblock code that was intended to set the infrastructure to high-level

programming execution or to execute specific processor instructions.

Although the scope of assembly language is limited in modern

firmware projects, there are enormous benefits of understanding assembly

language. In fact, it can be useful to understand any CPU architecture

such as its register sets, memory and I/O operational model, specific CPU

features, etc. Most high-level languages also provide an option to include

assembly programming to perform some operations that are not possible

without using inline assembly.

Appendix A The evoluTion of SySTem progrAmming lAnguAgeS

356

 System Programming Languages Today
The most widely used modern system programming language, C, has been

used for firmware development for the last 30 years. In parallel to the early

development of the Unix operating system, the journey of C started in the

years 1969–1973 by Dennis M. Ritchie. It was derived from the typeless

language BCPL (grandparent) and the language B (parent), and it evolved

as a type-based structural programming language that is suitable for

both system software and application software. With compilers becoming

available on every machine architecture, it omits the need for writing

assembly code and generating efficient object programs. Therefore, C

became a popular programming language for personal computers.

Finally, in the 1980s, the language was officially standardized by the

ANSI X3J11 committee. Since the early 1980s, its use has spread much more

widely so that it is clearly efficient enough to replace assembly language,

sufficient enough to abstract the hardware as a high-level language, and

provides specific implementation to access hardware like any low-level

language. Undoubtedly, Unix’s use of C was important for its success.

Here are some unique features of C that make it popular today:

• C remains a simple and small language, translatable

with simple and small compilers.

• The language is sufficiently abstract from the machine

details; hence, a program that is written for one

architecture can be easily migrated with minimal

changes in the tools.

• C provides a lot of built-in functions as part of the

central library.

• It supports the feature of dynamic memory allocation

where a program is able to allocate or free the

previously allocated memory.

Appendix A The evoluTion of SySTem progrAmming lAnguAgeS

357

• Perhaps the most significant feature of C is pointers. It

can directly interact with the memory by using pointers.

Table A-1 provides the steps for C program execution. For easy

understanding, a programmer can remember the mnemonic EPCALL.

Table A-1. C Program Execution

Execution Step Details

Editor The programmer writes the source code using an integrated

development environment (ide), and the entire execution flow

starts to ensure the written program can generate a binary that is

loaded into memory for execution.

Preprocessor The preprocessor is responsible for converting preprocessor

directives to create an expanded source code.

Compilation The expanded source code is sent to compiler, which converts the

source code into the assembly code.

Assembler The assembler is responsible for converting the assembly code

into machine language. This is typically referred to as object code

(.obj files).

Linker The object code is sent to a linker, which links it to the included

libraries. it converts it into executable code (.exe). depending

on the type of program, the executable format is converted into

binary (.bin).

Loader The loader is responsible for loading the executable code into memory,

and then it gets executed. Based on the nature of the program, it

accesses the system resources (either software or hardware).

Now let’s take a look at the third step in the C execution flow, which is

compilation (see Table A-2). This signifies why a programming language

with the caliber of C was needed to replace assembly language from system

Appendix A The evoluTion of SySTem progrAmming lAnguAgeS

358

programming. Table A-2 is a simple C program that performs the addition of

two numbers. Attempts to write such a program in assembly language would

need a specific low-level knowledge of instruction set architecture (ISA)

across different CPU architectures. The introduction of C diminished the

need for such handwritten assembly, and programmers can be less bothered

about understanding such low-level machine architecture differences.

Table A-2. C Program Compilation

Code Written in C x86 Assembler ARM Assembler

void main()

{

 int a = 10;

 int b = 20;

 c = a + b;

}

mov ax, a

mov bx, b

add ax, bx

mov c, ax

mov r0, a

mov r1, b

add r2, r1, r0

mov c, r2

 The Future of System
Programming Languages
The 21st century hardware devices are more concerned about the safety

and security of the platform and firmware being the closest entity of the

hardware; it’s important to ensure the system programming language that

is being used for firmware development is safe enough. As per Common

Vulnerabilities and Exposures (CVE) reports, in the last decade 70 percent

of all security bugs being reported are due to memory safety issues. Tools

and guidance are not able to prevent this class of vulnerabilities. At a

recent conference, Microsoft and Chrome security experts acknowledged

that the predominant system programming languages used by both

companies are C and C++, which are unsafe languages in nature. An

unsafe language allows full control to the developer to directly access

Appendix A The evoluTion of SySTem progrAmming lAnguAgeS

359

any memory address using pointers and doesn’t restrict or warn or alert

developers when they are making basic memory management errors.

Later, the attackers try to find those vulnerabilities and exploit them.

Memory safety is a property of system programming languages that defines

the mechanism for the firmware/software when dealing with memory

access. It’s basically a protection methodology maintained by the system

programming language. Building the firmware/software (OS kernels,

networking stack etc.), which allows easier access to the hardware using a

memory-safe language, will help to mitigate such problems.

System programming languages are used in modern hardware, which

was created several decades ago when security exploitation and attacks

were not in consideration while developing system programs. The industry

has started exploring other opportunities for low-level system program

development using safe system programming languages. In the 2010s,

Graydon Hoare at Mozilla Research designed a language called Rust for

performance and safety, especially for safe concurrency. Since then it has

gained use in the industry, and Microsoft has also started experimenting

with it. As part of Project Verona, Microsoft’s goal is to create a Rust-like

safe system programming language that can help to create a safer platform

for memory management.

The Rust programming language is designed for modern and

future platforms where security and reliability are major concerns. It’s a

multimodel system programming language that provides the comfort of a

high-level programming language and still is able to provide the low-level

control. Here are some unique features of Rust that are the reasons behind

its continuous popularity:

• Memory safety: Typically, being vulnerable to software bugs

is caused due by coding errors such as buffer overflows,

no provision for boundary checks, dangling pointers, etc.

Tools like Coverity allow static memory analysis for C to

ensure the program is free of memory errors. The Rust

Appendix A The evoluTion of SySTem progrAmming lAnguAgeS

360

programming language implements a borrow checker for

ensuring memory safety. It follows these principles:

• All variables are initiated before they are used.

• Movement of a variable value is not allowed while it

is borrowed.

• When a variable goes out of scope, Rust

automatically calls the drop function and cleans up

the heap memory for that variable.

Table A-C is an example that shows both data pointers pointing to the

same location using the C and Rust programming languages to highlight

what the memory safety signifies and how Rust ensures safety at compile

time rather than running into the undefined behavior error at runtime.

Table A-C. Example

Implementing Code in C

#include <stdio.h>

void main()

{

 char *src = "Hello";

 char *dst = src;

 printf("%s World!\n", src);

 printf("Writing %s World Program.\n", dst);

}

Output
Hello World!

Writing Hello World Program.

(continued)

Appendix A The evoluTion of SySTem progrAmming lAnguAgeS

361

Table A-C. (continued)

Implementing Code in Rust

1| fn main() {

2| let src = String::from("Hello");

3| let dst = src;

4|

5| println!("{} World!", src);

6| println!("Writing {} World Program", dst);

7| }

Output
error[E0382]: borrow of moved value: `src`

 --> main.rs:5:27

 |

2 | let src = String::from("Hello");

5 | --- move occurs because `src` has type

`std::string::String`, which does not

implement the `Copy` trait

3 | let dst = src;

5 | --- value moved here

4 |

5 | println!("{} World!", src);

5 | ^^^ value borrowed

here after move

error: aborting due to previous error

For more information about this error, try `rustc --explain E0382`.

Appendix A The evoluTion of SySTem progrAmming lAnguAgeS

362

• Executable size: Rust uses static linking to compile

its programs, meaning all different types of libraries

required by the Rust program will be compiled

and be part of the executable. Typically, when a

C executable runs, it actually makes a system call

that transfers control to the operating systems to

perform the required operation. For example, when

the C executable wants to printf a message such as

“Hello World!” it just makes the write system call to

the standard output. But for the Rust programming

language, it bundles all the required standard libraries

so that it doesn’t need to rely on OSs.

• Better access to hardware registers: Memory-

mapped hardware registers are numerous in the

firmware programming space, and unknowingly or

unintentionally modifying a bit might be sufficient

to change the behavior of the hardware. Hence, it’s

important to ensure that the compiler is able to detect

any such scenarios where the given value is within

the prescribed register boundary. Using a type-level

programming to get more advanced checking on the

memory-mapped register at compile time would help

to make a safer system program.

• Namespaces: For any language, the names are the

way to uniquely identify an entity and can be labels,

variables, functions, etc. In Rust, a namespace is a

logical grouping of declared names. It allows the

occurrence of the same name in different namespaces

without any conflict. For example, to maintain the

semantics in function names in a system firmware

project that involves cross-architectures, you need to

Appendix A The evoluTion of SySTem progrAmming lAnguAgeS

363

maintain different techniques in the C programming

language such as weak symbols and NULL pointer

checks to ensure only one instance of the function call

is getting included. Also, it’s hard to debug and figure

out which function is actually in use. In Rust, within

a namespace, names are organized in a hierarchy,

where each level of the hierarchy has its own name.

The double colon (::) is an operator that is used to

define the namespace. In Rust, calling arch::halt()

is enough from the mainboard directory to resolve the

symbol issues without any additional overhead.

The mainboard directory calls these functions:

src/mainboard/sifive/hifive/src/main.rs:154: arch::halt()

src/mainboard/aaeon/upsquared/src/main.rs:39: arch::halt()

The SoC directory implements the halt() function:

src/arch/riscv/rv32/src/lib.rs:9:pub fn halt() -> ! {

src/arch/x86/x86_64/src/lib.rs:13:pub fn halt() -> ! {

In the previous example, HiFive, a mainboard built around RISC-V SoC

and upsquared, is a x86-based platform.

• Replacement of the makefile: A makefile is the set of

instructions that you use to tell how to build your

program. Typically, a handwritten makefile is too error-

prone as you need to instruct the machine to include a

set of files during compilation. Many high-level system

programming languages are trying to remove the

handwritten makefile dependency from programmers.

In Rust, the cargo-make task runner is able to define

and configure sets of tasks via Cargo.toml files and run

them as a flow.

Appendix A The evoluTion of SySTem progrAmming lAnguAgeS

364

• Hygienic macros: For safe system programming,

hygienic macros ensure there are no accidental

captures of identifiers. Macros are getting preprocessed

and expand the scope of the code prior passing the

expanded source code to the compiler. A programming

language embedded with a non-hygienic macro

system has a problem where an existent variable may

get hidden during the macro creation or even during

its expansion, which finally would result in incorrect

output. A system programming language that supports

hygienic macros prevents macros from interfering with

variables that are declared outside of the macro.

Demonstrate the Nonhygienic Macro Problem Using C

#include <stdio.h>

#define f(a,b) a*z

int main()

{

 int a = 2, b = 5, z = 3;

 printf("Multiplication Macro in `C` = %d\n", f(a, b));

 return 0;

}

Output:
Multiplication Macro in `C` = 6

in this example, after preprocessing the input variable, b is getting replaced by the

local variable z, which results in unexpected output from this multiplication function.

Let’s rerun the same multiplication operation in Rust that supports

hygienic macros.

Appendix A The evoluTion of SySTem progrAmming lAnguAgeS

365

Demonstrate the Hygienic Macro Using Rust

macro_rules! f{

 ($a:expr,$b:expr)=>{

 {

 $a*$z

 }

 }

}

fn main() {

 let (a, b, z) = (2, 5, 3);

 println!("Multiplication Macro in Rust = {}", f!(a, b));

}

Output
error: expected expression, found `$`

 --> main.rs:12:16

 |

12 | $a*$z

 | ^^ expected expression

...

19 | println!("Multiplication Macro in Rust = {}", f!(a, b));

 | -------- in this macro invocation

 |

 = note: this error originates in the macro `f` (in Nightly

builds, run with -Z macro- backtrace for more info)

error: aborting due to previous error

The hygienic macro in rust allows metaprogramming. unlike macros in C

languages, rust macros are expanded into abstract syntax trees, rather than just

string preprocessing, so programmers won’t run into unexpected problems as

illustrated earlier with the usage of nonhygienic macros.

Appendix A The evoluTion of SySTem progrAmming lAnguAgeS

366

In summary, a safe system programming language like Rust has the

potential to perform low-level operations when needed with efficient

access to the hardware register, has easy memory management, and also

provides rich libraries that makes a programmer’s job easier. In addition

to platform security, another key area that all future firmware projects are

continuously focusing on is system boot time. System boot time is critical,

and there are several ways to reduce the boot time such as doing more

operations in parallel even during the scope of system firmware. Today,

performing parallel operations using C code might be a little risky due to

its lack of memory safety techniques; otherwise, one of the key advantages

of Rust as a system programming language for the future is its fearlessness

during concurrency.

Appendix A The evoluTion of SySTem progrAmming lAnguAgeS

367© Subrata Banik and Vincent Zimmer 2022
S. Banik and V. Zimmer, Firmware Development,
https://doi.org/10.1007/978-1-4842-7974-8

 APPENDIX B

initramfs: A Call for
Type-Safe Languages
Boot time is a key performance indicator (KPI) for modern computing

devices, and development cost is an indispensable factor for calculating

firmware development projects. Firmware is the first piece of the code that

runs after a processor reset, and due to its privileged operation model, any

exploits in the firmware are extremely difficult to detect. The majority of

modern firmware development is based on the C system programming

language, where the most skilled programmers even make simple mistakes

that remain hidden from the compiler. These mistakes make firmware an

ideal place for advanced persistent threats, and the system may become

fatal to the attackers. To overcome these performance, development cost,

and security issues in the firmware space over the past several years, the

industry has started looking into the possibility of bringing the maturity of

the Linux-like kernel (which is widely used and tested) to the proprietary

firmware to establish trust in the computing system. Firmware projects

have started accommodating embedded kernels as part of SPI Flash as a

replacement for complex firmware drivers. This technique of embedding

the kernels into the firmware’s trusted computing boundary could help to

improve boot time performance and allow platform configuration. Almost

all new firmware stacks include a multiprocessing operating system with

drivers, various protocol stacks, and a file system. Having an embedded

https://doi.org/10.1007/978-1-4842-7974-8

368

kernel is not enough, as it needs a root file system known as initramfs

(which stands for “initial RAM file system”). initramfs is a root file system

that is embedded into the kernel, and when the kernel starts, it checks for

the presence of initramfs. If it’s available then the kernel sets up a RAM

file system and extracts initramfs into the RAM file system, so that the

kernel can execute '/init'. The init program is typically a script-based

implementation such as Perl Linux. In most cases, the kernel SPI Flash is

used to boot to another kernel from the bootable media. These embedded

root file systems contain a set of standard Unix-style programs written in C.

Over a period of time, there have been several successful attacks against

the C-based firmware, such as a buffer overflow issue named GHOST

(GetHOST) in 2015 and a stack buffer overflow vulnerability allowed the

remote attackers to induce a denial of service (crash). The more details can

be found in the CVE-2021-3382 vulnerability report.

U-root is an embeddable root file system that is packed as an LZMA-

compressed initramfs in cpio format, contained in a Linux compressed

kernel image (bzImage), and placed in an SPI Flash device as part of the

payload for a boot firmware image. The goal of u-root as a root file system

is to provide minimal binary support, unlike most root file systems, which

embed only binaries. Typically, u-root has only five essential programs: an

init program (that contains minimal lines of code) and four Go-compiled

binaries. The rest of the root file system contains the source, which can be

compiled on demand as libraries and a set of u-root source files for basic

commands. Currently, u-root packed into the firmware space is no longer

a support source to binary generation. All these u-root utilities correspond

to standard Unix utilities and are written in the Go language.

Go (often referred to as Golang) is a programming language created

in 2009 by Google. Go is a modern programming language that provides

memory safety, garbage collection, type-safe support, concurrency

features, and interprocess communication. Here are some of the key

benefits of the Go programming language:

Appendix B iniTrAmfS: A CAll for Type-SAfe lAnguAgeS

369

• Fast: Go is a compiled language, which means it

needs a compiler that converts the written code into a

machine-level language. Brad Fitzpatrick highlighted

at the GoCon conference in 2014 that Go in terms of

performance is still comparable with the C language

(although C is most efficient) but easier for developers

to learn. Go, being a modern programming language,

can utilize the multiprocessing nature of the modern

computing system, which makes it performance

efficient compared to the others, easy to learn, and

more user friendly. Go manages to maintain a unique

position because of its fast operation and easy-to-

learn nature.

• Concurrency: Modern computing systems demand

parallelized operations, and the Go language has

built-in concurrency features. Go offers a light-weight

process that has been implemented using a native

goroutine; a function call prefixed with the go keyword

starts a function in a new goroutine. Implementing

multithreading with other languages like C is not that

straightforward. For example, coreboot (built using the

C programming language) has been unable to meet the

expectation of concurrency for several decades.

• Garbage collection: Go has a strong commitment to

garbage collection, and different Go releases have tried

to improve the garbage collector logic.

• Mixed language: The Go language blurs the line

between a high-level and low-level language; it is a

high-level language, but it can be used to perform

operations as a low-level programming language as

needed. Having such a type-safe, high-level language

Appendix B iniTrAmfS: A CAll for Type-SAfe lAnguAgeS

370

that can be used for low-level embedded firmware

might make the firmware security stronger than the

user programs because an efficient static compiler

might nullify all possible firmware-level exploits.

• Open source: Go is an open source programming

language that makes it easy to build reliable and

efficient software. Developers can get many useful

libraries readily available at https://golang.org/pkg/

for use.

In response to increasing security concerns on embedded devices,

u-root was developed using the Go language, a modern language that

provides memory safety, that was developed with minimal binaries and

that delivers fast operations (the response time is about a millisecond

while compiling the source to binary). The initial layout of a u-root file

system is described as follows: the /src directory contains a set of u-root

source files for basic commands such as cat, cmp, date, etc. The /go/

bin directory is for any Go tools built after boot; the /go/src/ for source

package and toolchains is needed for these programs; the /go/pkg/tool/

directory contains binaries for supporting the target OS and architecture,

and one init binary. When a Linux kernel starts, it locates initramfs, sets up

a RAM file system, and extracts initramfs into the RAM file system. Finally,

the kernel starts the /init process, and the init binary as part of u-root

sets up some basic directories, symlinks, and files and builds a command

installer. u-root can create an initramfs file system in two different modes.

• Busybox mode: One busybox-like binary comprises

all the Go tools that users are asked to include. In this

mode, u-root copies and rewrites the source of the tools

that the user was asked to include to be able to compile

everything into one busybox-like binary. This is the

only supported mode for the firmware.

Appendix B iniTrAmfS: A CAll for Type-SAfe lAnguAgeS

https://golang.org/pkg/

371

• Binary mode: Each specified binary is compiled

separately, and all binaries are added to initramfs.

u-root is the initramfs file system for the LinuxBoot project. The user

can then boot to the kernel using kexec from a block device or over a

network. u-root contains boot policy tools, also written in the Go language

that supports fbnetboot and localboot.

The benefits of the Go language are that it is simple, fast, secure,

type-safe, and concurrent. Additionally, when developing initramfs using

u-root over traditional scripts, compared to a fixed set of commands being

available, this approach of having source code as part of a binary while

doing a firmware project provides more flexibility to create new commands

using on-demand compilation. Further, init could build a special shell at

boot time that pulls in built-ins to extend the shell without modifying the

whole binary.

Appendix B iniTrAmfS: A CAll for Type-SAfe lAnguAgeS

373© Subrata Banik and Vincent Zimmer 2022
S. Banik and V. Zimmer, Firmware Development,
https://doi.org/10.1007/978-1-4842-7974-8

 Glossary

ACPI Advanced Configuration and Power Interface

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB AMBA Advanced Peripheral Bus

APCB AMD PSP Control Block

AXI-AP AMBA AXI Access Port

BBS BIOS Boot Specification

BCT Binary Configuration Tool

Blobs Binary Large Objects

BMC Baseboard Management Controller

BSP BootStrap Processor

CBI CrOS Board Info

CCD Closed Case Debug

CoC Code of Conduct

CodeXL A comprehensive tool suite used on AMD-based platforms

to access the CPU, GPU, and APUs with a single program

CPU Central Processing Unit

CrOS Chrome/Chromium OS

CSP Cloud Service Providers

https://doi.org/10.1007/978-1-4842-7974-8

374

DCI Intel Direct Connect Interface

DTB Device Tree Blob

DTC Device Tree Compiler

DTFS Device Tree File System

EC Embedded Controller

EDKII A modern, feature-rich, cross-platform firmware

development environment for the UEFI and UEFI Platform

Initialization (PI) specifications

ELF Executable and Linking Format

FD Firmware Device

FRU Field Replaceable Unit

FSP Firmware Support Package; a specification designed with a

standard API interface to perform silicon initialization and

provide information to the boot firmware

FV Firmware Volume

GCC GNU Compiler Collection

GDB GNU Debugger

GDT Global Descriptor Table

Gerrit A code review and project management tool for Git-based

projects

Git An open source version control system

GitHub A web-based version control repository hosting

service for Git

GOP Graphics Output Protocol

HII Human Interface Infrastructure

gloSSAry

375

ICMB Intelligent Chassis Management Bus; provides a standardized

interface for connecting satellite controllers and/or BMC in

another chassis

IDE An integrated development environment used for software

development

IFR Internal Forms Representation

IPMI Intelligent Platform Management Interface

JTAG Joint Test Action Group, an industry standard for verifying

the hardware design

KVM Keyboard-Video-Mouse

MP Multi-Processor

MTRR Memory Type Range Register

OpenTitan An open source project for building a transparent, high-

quality reference design and integration guidelines for

creating silicon root of trust (RoT) chips

OpROM Option ROM

OS Operating System

PEI Pre-EFI Initialization

PI Platform Initialization

PIC Position Independent Code

PPI PEIM to PEIM Interface

gloSSAry

376

Rings Used to define the criticality or privilege level that different

system components use to operate on the host system; On

IA architecture Ring 0 is considered the most privileged

operation and typically the kernel is operating in that ring,

whereas on the ARM platform, Ring 3 is considered the most

secure and involves running secured firmware from SoC

vendors, Secure Monitor, and Trusted ROM firmware

RunBMC A smarter, simpler, open approach to out-of-band

management for servers

Rust A modern system programming language designed for

performance and safety, especially safe concurrency

SCM Source Control Management

SDK Software Development Kit

SFF Small Form Factor

SMBUS System Management Bus

SoC System on Chip

SSH Secure Shell

SVN Subversion

SW-DP Serial Wire Debug Port

SWD Serial Wire Debug

SWJ-DP Serial Wire/JTAG Debug Port

TTM Time-To-Market

TXT Trusted eXecution Technology

u-bmc An open source firmware for baseboard management

controllers

UEFI Unified Extensible Firmware Interface

gloSSAry

377

UPD Updatable Product Data; a data structure that holds

configuration regions that are part of the FSP binary

VBE VESA BIOS Extensions

VBIOS Video BIOS; used to program either onboard graphics

or discrete graphics card and is specific to the device

manufacturer

VCS Version Control System

VESA Video Electronics Standards Association

VFR Visual Forms Representation

VNC Virtual Network Computing

WinDbg Windows Debugger

XDP eXtended Debug Port

XIP eXecute-In-Place

ZBL Zeroth Stage Boot Loader; an SoC bootloader for RISC-V

that loads an ODM/OEM bootloader from the SPI Flash

gloSSAry

379© Subrata Banik and Vincent Zimmer 2022
S. Banik and V. Zimmer, Firmware Development,
https://doi.org/10.1007/978-1-4842-7974-8

 Reference

 Websites
Coredna. What is Open Source Software?, Comparing open source software

and closed source software (introduction): https://www.coredna.com/

blogs/comparing- open- closed- source- software

GCFGlobal. Open source vs. closed source software, Understanding

different types of computer software (Chapter 1): https://edu.

gcfglobal.org/en/basic- computer- skills/open- source- vs- closed-

source-software/1/

Wikipedia. Comparison of open-source and closed-source software,

Understanding different types of computer software (Chapter 1): https://

en.wikipedia.org/wiki/Comparison_of_open- source_and_closed-

source_software

Wikipedia. Intelligent Platform Management Interface, Understanding

IPMI interface specifications that provide management and monitoring

capabilities independently of the host system software (Chapter 1):

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_

Interface

OpenBMC: A Linux Foundation Project. OpenBMC Github, Steps to

access OpenBMC code repository (Chapter 1): https://github.com/

openbmc/openbmc

Intel Corporation. EC FW application modules, Zephyr-based

embedded controller firmware documentation (Chapter 1): https://

intel.github.io/ecfw- zephyr/reference/modules.html

https://doi.org/10.1007/978-1-4842-7974-8
https://www.coredna.com/blogs/comparing-open-closed-source-software
https://www.coredna.com/blogs/comparing-open-closed-source-software
https://edu.gcfglobal.org/en/basic-computer-skills/open-source-vs-closed-source-software/1/
https://edu.gcfglobal.org/en/basic-computer-skills/open-source-vs-closed-source-software/1/
https://edu.gcfglobal.org/en/basic-computer-skills/open-source-vs-closed-source-software/1/
https://en.wikipedia.org/wiki/Comparison_of_open-source_and_closed-source_software
https://en.wikipedia.org/wiki/Comparison_of_open-source_and_closed-source_software
https://en.wikipedia.org/wiki/Comparison_of_open-source_and_closed-source_software
https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://github.com/openbmc/openbmc
https://github.com/openbmc/openbmc
https://intel.github.io/ecfw-zephyr/reference/modules.html
https://intel.github.io/ecfw-zephyr/reference/modules.html

380

Intel Corporation. Microchip MEC15xx modular embedded control

card (MECC), The reference hardware used to showcase EC FW open

source (Chapter 1): https://intel.github.io/ecfw- zephyr/reference/

supported_hw.html

Jessie Frazelle. Open-source Firmware, Open-source firmware step

into the world behind the kernel (Chapter 1): https://queue.acm.org/

detail.cfm?id=3349301

UEFI org. Embedded Controller Interface Description, ACPI_

Embedded_Controller_Interface_Specification (Chapter 1): https://

uefi.org/specs/ACPI/6.4/12_ACPI_Embedded_Controller_Interface_

Specification/embedded- controller- interface- description.html

Weibeld net. Smartphone Modem Access with AT Commands,

Explaining what AT commands are and how they can be used to issue

direct commands to the baseband processor of a smartphone (Chapter 1):

https://weibeld.net/mobcom/at- commands.html

Aspeed. AST2500, ASPEED’s sixth-generation server management

processor (Chapter 1): https://www.aspeedtech.com/server_ast2500/

Jordan Mulcare. Baseboard management controller solution is cost-

effective, Understanding the cost effective solution of BMC (Chapter 1):

https://www.electronicspecifier.com/products/boards- and-

backplanes/baseboard- management- controller- solution- is- cost-

effective

Inspur Electronic Information Industry Co., Ltd. NF5280M5

Product Technical White Paper, The Inspur Yingxin NF5280M5 server is

dedicated toward meeting Internet, Internet Data Center (IDC), cloud

computing, enterprise markets, and telecommunications application

requirements (Chapter 1): https://www.inspur.com/eportal/fileDir/

defaultCurSite/resource/cms/2020/04/2020040211224398612.pdf

Matthew Lee, Intel Corporation. White Paper: Embedded Controller

Usage in Low Power Embedded Designs, This white paper is intended

to give readers an overview of embedded controller usage (Chapter 1):

referenCe

https://intel.github.io/ecfw-zephyr/reference/supported_hw.html
https://intel.github.io/ecfw-zephyr/reference/supported_hw.html
https://queue.acm.org/detail.cfm?id=3349301
https://queue.acm.org/detail.cfm?id=3349301
https://uefi.org/specs/ACPI/6.4/12_ACPI_Embedded_Controller_Interface_Specification/embedded-controller-interface-description.html
https://uefi.org/specs/ACPI/6.4/12_ACPI_Embedded_Controller_Interface_Specification/embedded-controller-interface-description.html
https://uefi.org/specs/ACPI/6.4/12_ACPI_Embedded_Controller_Interface_Specification/embedded-controller-interface-description.html
https://weibeld.net/mobcom/at-commands.html
https://www.aspeedtech.com/server_ast2500/
https://www.electronicspecifier.com/products/boards-and-backplanes/baseboard-management-controller-solution-is-cost-effective
https://www.electronicspecifier.com/products/boards-and-backplanes/baseboard-management-controller-solution-is-cost-effective
https://www.electronicspecifier.com/products/boards-and-backplanes/baseboard-management-controller-solution-is-cost-effective
https://www.inspur.com/eportal/fileDir/defaultCurSite/resource/cms/2020/04/2020040211224398612.pdf
https://www.inspur.com/eportal/fileDir/defaultCurSite/resource/cms/2020/04/2020040211224398612.pdf

381

https://www.intel.com/content/dam/www/public/us/en/documents/

white- papers/controller- usage- low- power- designs-paper.pdf

NXP. Zephyr™ OS for Edge Connected Devices, The Zephyr Project

strives to deliver the best-in-class RTOS for connected resource-

constrained devices, built to be secure and safe (Chapter 1): https://www.

nxp.com/design/software/embedded- software/zephyr- os- for- edge-

connected- devices:ZEPHYR- OS- EDGE

Mazen Gedeon and Anas Nashif, Intel Corporation. Zephyr™ OS

on Embedded Controller, open source embedded controller firmware

development with the Zephyr OS (Chapter 1): https://zephyrproject.

org/open- source- embedded- controller- firmware- development- with-

the- zephyr- os/

Maurice Ma, Intel Corporation. Python Setup Browser for UEFI VFR,

Demonstrate how to convert the UEFI VFR setup into YAML format and

browse setup options on target or host (Chapter 2): https://github.com/

mauricema/uefi_vfr_cfg

Slim Bootloader. SBL Configuration, Slim Bootloader Open

Source Project (version 1.0) documentation (Chapter 2): https://

slimbootloader.github.io/developer- guides/configuration.html

Susan Potter. Gerrit vs. Github, Highlighting code review and codebase

management differences between Gerrit and GitHub (Chapter 3):

https://gist.github.com/mbbx6spp/70fd2d6bf113b87c2719

OpenGenus Foundation. Gerrit vs. GitHub vs. GitLab, Understanding

the advantages of Gerrit as compared to GitHub and GitLab (Chapter 3):

https://iq.opengenus.org/gerrit- vs- github- vs- gitlab/

Atlassian. Git Tutorials, Learn Git with Bitbucket Cloud (Chapter 3):

https://www.atlassian.com/git/tutorials/learn- git- with-

bitbucket- cloud

Atlassian. Version Control for Beginners, Explaining what version

control is (Chapter 3): https://www.atlassian.com/git/tutorials/

what- is- version- control

referenCe

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/controller-usage-low-power-designs-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/controller-usage-low-power-designs-paper.pdf
https://www.nxp.com/design/software/embedded-software/zephyr-os-for-edge-connected-devices:ZEPHYR-OS-EDGE
https://www.nxp.com/design/software/embedded-software/zephyr-os-for-edge-connected-devices:ZEPHYR-OS-EDGE
https://www.nxp.com/design/software/embedded-software/zephyr-os-for-edge-connected-devices:ZEPHYR-OS-EDGE
https://zephyrproject.org/open-source-embedded-controller-firmware-development-with-the-zephyr-os/
https://zephyrproject.org/open-source-embedded-controller-firmware-development-with-the-zephyr-os/
https://zephyrproject.org/open-source-embedded-controller-firmware-development-with-the-zephyr-os/
https://github.com/mauricema/uefi_vfr_cfg
https://github.com/mauricema/uefi_vfr_cfg
https://slimbootloader.github.io/developer-guides/configuration.html
https://slimbootloader.github.io/developer-guides/configuration.html
https://gist.github.com/mbbx6spp/70fd2d6bf113b87c2719
https://iq.opengenus.org/gerrit-vs-github-vs-gitlab/
https://www.atlassian.com/git/tutorials/learn-git-with-bitbucket-cloud
https://www.atlassian.com/git/tutorials/learn-git-with-bitbucket-cloud
https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.atlassian.com/git/tutorials/what-is-version-control

382

Beepsend. Understanding Gerrit, Abandoning Gitflow and GitHub

in favor of Gerrit (Chapter 3): https://www.beepsend.com/2016/04/05/

abandoning- gitflow- github- favour- gerrit/

GeeksforGeeks. Open-Source Version Control Tools, Top five free

and open source version control tools (Chapter 3): https://www.

geeksforgeeks.org/top- 5- free- and- open- source- version- control-

tools- in- 2020/

DevMountain. Git vs. GitHub, Understanding the difference between

Git and GitHub (Chapter 3): https://blog.devmountain.com/git- vs-

github- whats- the- difference/

Intel Corporation. Power Management Controller Debugging, Debug

methodology for low-power platform state using power management

controller (PMC) core driver and telemetry driver (Chapter 4):

https://01.org/blogs/2019/using- power- management- controller-

drivers- debug- low- power- platform- states

Maxim Goryachy, Mark Ermolov, HITBSecConf 2017 CommSec,

Amsterdam. Intel DCI Secrets, x86 hardware debugging (Chapter 4):

https://conference.hitb.org/hitbsecconf2017ams/materials/

D2T4%20- %20Maxim%20Goryachy%20and%20Mark%20Ermalov%20- %20

Intel%20DCI%20Secrets.pdf

ARM Limited. Debugger usage on Armv8-A, Learn the architecture:

debugger usage on Armv8-A (Chapter 4, System Debugging): https://

developer.arm.com/documentation/102140/latest/Program- load

Asmita Jha. IoT Security, hardware attack surface: JTAG, SWD

(Chapter 4): https://payatu.com/blog/asmita-jha/hardware- attack-

surface- jtag- swd

Kudelski Security Research, SWD – ARM’S ALTERNATIVE TO JTAG,

Understanding the ARM Debug Interface (Chapter 4): https://research.

kudelskisecurity.com/2019/05/16/swd- arms- alternative- to- jtag/

referenCe

https://www.beepsend.com/2016/04/05/abandoning-gitflow-github-favour-gerrit/
https://www.beepsend.com/2016/04/05/abandoning-gitflow-github-favour-gerrit/
https://www.geeksforgeeks.org/top-5-free-and-open-source-version-control-tools-in-2020/
https://www.geeksforgeeks.org/top-5-free-and-open-source-version-control-tools-in-2020/
https://www.geeksforgeeks.org/top-5-free-and-open-source-version-control-tools-in-2020/
https://blog.devmountain.com/git-vs-github-whats-the-difference/
https://blog.devmountain.com/git-vs-github-whats-the-difference/
https://01.org/blogs/2019/using-power-management-controller-drivers-debug-low-power-platform-states
https://01.org/blogs/2019/using-power-management-controller-drivers-debug-low-power-platform-states
https://conference.hitb.org/hitbsecconf2017ams/materials/D2T4 - Maxim Goryachy and Mark Ermalov - Intel DCI Secrets.pdf
https://conference.hitb.org/hitbsecconf2017ams/materials/D2T4 - Maxim Goryachy and Mark Ermalov - Intel DCI Secrets.pdf
https://conference.hitb.org/hitbsecconf2017ams/materials/D2T4 - Maxim Goryachy and Mark Ermalov - Intel DCI Secrets.pdf
https://developer.arm.com/documentation/102140/latest/Program-load
https://developer.arm.com/documentation/102140/latest/Program-load
https://payatu.com/blog/asmita-jha/hardware-attack-surface-jtag-swd
https://payatu.com/blog/asmita-jha/hardware-attack-surface-jtag-swd
https://research.kudelskisecurity.com/2019/05/16/swd-arms-alternative-to-jtag/
https://research.kudelskisecurity.com/2019/05/16/swd-arms-alternative-to-jtag/

383

Universal Scalable Firmware. Linux Payload, To build a basic Linux

payload conforming to universal payload standard (Chapter 6): https://

github.com/UniversalScalableFirmware/linuxpayload

Coreboot GitHub. Starting from scratch, A document for how to build

coreboot (Chapter 6): https://doc.coreboot.org/tutorial/part1.html

 References for Chapter 5
UEFI. Getting a Handle on Firmware Security, A document to explain

why Firmware is an easy target for attacker: https://uefi.org/sites/

default/files/resources/Getting%20a%20Handle%20on%20Firmware%20

Security%2011.11.17%20Final.pdf

Cybersecurity Dive. A security expert’s guide to the top-exploited

vulnerabilities, The biggest and baddest ransomware groups love an easy

vulnerability: https://www.cybersecuritydive.com/news/CISA- CVE-

most-common- vulnerability- 2020- 2021- ransomware/604426/

Kim Zetter. Inside the Cunning, Unprecedented Hack of Ukraine’s Power

Grid, The hack on Ukraine’s power grid was a first-of-its-kind attack that

sets an ominous precedent for the security of power grids everywhere:

https://www.wired.com/2016/03/inside- cunning- unprecedented-

hack- ukraines- power- grid/

Naked Security. HP LaserJet printers at risk of fiery hacker attack,

A study discovered a security vulnerability in “tens of millions” of HP

LaserJet printers that could allow a remote hacker to install malicious

firmware: https://nakedsecurity.sophos.com/2011/11/29/hp-

laserjet- printers- at- risk- of- fiery- hacker- attack/

 Books, Conferences, Journals, and Papers
 – M. Howard and S. Lipner, The Security Development Lifecycle,

Redmond, WA, USA: Microsoft Press, 2006.

referenCe

https://github.com/UniversalScalableFirmware/linuxpayload
https://github.com/UniversalScalableFirmware/linuxpayload
https://doc.coreboot.org/tutorial/part1.html
https://uefi.org/sites/default/files/resources/Getting a Handle on Firmware Security 11.11.17 Final.pdf
https://uefi.org/sites/default/files/resources/Getting a Handle on Firmware Security 11.11.17 Final.pdf
https://uefi.org/sites/default/files/resources/Getting a Handle on Firmware Security 11.11.17 Final.pdf
https://www.cybersecuritydive.com/news/CISA-CVE-most-common-vulnerability-2020-2021-ransomware/604426/
https://www.cybersecuritydive.com/news/CISA-CVE-most-common-vulnerability-2020-2021-ransomware/604426/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://nakedsecurity.sophos.com/2011/11/29/hp-laserjet-printers-at-risk-of-fiery-hacker-attack/
https://nakedsecurity.sophos.com/2011/11/29/hp-laserjet-printers-at-risk-of-fiery-hacker-attack/

384

 – S. Myagmar, A. J. Lee, and W. Yurcik, “Threat modeling as a

basis for security requirements,” in Symposium on

Requirements Engineering for Information Security, 2005,

pp. 1–8.

 – Varghese and A. K. Bose, “Threat modeling of industrial

controllers: A firmware security perspective,” 2014

International Conference on Anti-Counterfeiting, Security and

Identification (ASID), 2014, pp. 1–4, doi: 10.1109/

ICASID.2014.7064951.

referenCe

385

Index

A
Access control, 201, 290, 296
Advanced Configuration and

Power Interface (ACPI),
267, 322, 323

Advanced Programmable Interrupt
Controller (APIC), 6, 24

Adversary, 284
AMIDebug Rx, 256
AMI Firmware Update (AFU), 174
Anti-replay security property, 281
Anti-rollback, 283
API mode, 12
Application processors

(APs), 24, 335
ARM-based platform

hardware, 232
Arm Debugger, 252, 253
ASPEED BMC chip, 88
Aspeed BMC chipset, 98
Assembly languages, 354, 355
Assumptions, 285
Attack vectors, 288, 289
Authenticity, 281, 289
AutoGen process, 159
Availability, 290
Availability security property, 282

B
Baseboard management

controller (BMC)
AST2500 BMC chip, 89, 90
closed infrastructure, 93
EC firmware (see EC firmware

architecture)
hardware, 94
ICMB, 91
IPMB, 91, 92
IPMI, 90–92
JBODs, 88
key parameters, 88
OpenBMC project, 95–98
remote server management, 93
rootkit, 94
RunBMC, 101, 102
security liability, 94
server motherboard hardware

block diagram, 88
server stability and

reliability, 88
typical server platform remote

management, 93
u-bmc, 98–100
vulnerability, 94

BaseTools/Util directory, 133

© Subrata Banik and Vincent Zimmer 2022
S. Banik and V. Zimmer, Firmware Development,
https://doi.org/10.1007/978-1-4842-7974-8

https://doi.org/10.1007/978-1-4842-7974-8

386

Basic Input/Output System (BIOS),
309–313, 322, 328, 331, 333,
335, 336, 351, 352

Beyond BIOS, 308, 309
Bill of material (BoM) cost, 307
Binary Configuration Tool

(BCT), 170
Binary large objects (BLOBs), 11
BIOS Boot Specification

(BBS), 71, 72
BlackDuck, 302
Blt() function, 80
bootblob, 62, 64
Boot firmware, 12, 13, 25, 48, 56,

273, 305, 326
Boot firmware volume (BFV), 34
Booting, 3, 5, 8, 13, 42, 43, 67,

87, 89, 94
Boot ROM, 291
Boot services, 5
Boot Strap Processor (BSP),

24, 62, 333
Build process, 133
Build tools
Build tools, 131, 132

BaseTools/Util directory, 133
coreboot build tools (see

Coreboot build tools)
EDKII (see EDKII build tools)

C
Cache as RAM (CAR), 343
cbfstool tool, 156–158

Computing system, 274
C execution flow, 357
CfgDataStitch tool, 168
Closed Case Debug (CCD), 229,

244, 259
Closed source EC firmware, 113
Closed source firmware, 3, 8, 10

binary, 11
development, 8
software, 100

Cloud-driven services, 273
Cloud service providers (CSPs), 3
Code maintenance, 213
Code of conduct (CoC), 210–212
Code review database, 203
Coding standard, 212, 213, 215

commenting, 220, 221
commit messages, 221–225
indentation, 214, 215
maximum columns per line, 216
naming conventions, 218, 219
process, 212
typedef, 219–220
use spaces, 217, 218
using braces, 216, 217

Commit, 209
Compilers, 356, 357, 362
Computing device, 2
Computing platform, 276, 286
Computing system, 1, 278
Concurrent Version System (CVS)

tool, 179
Confidentiality, 280, 290
Config Editor, 170

INDEX

387

Configurability, 131
Configuration tools, 131

BCT/Config Editor, 170, 171
firmware configuration

interface, 168, 169
HII, 163, 164
YAML-based

configuration, 166–168
coreboot boot flow, 327
coreboot build tools

AutoGen process, 159
build environment setup, 151
build process, 159
cbfstool, 156–158
coreboot package, 153
environmental variables, 152
high-level build process,

149, 150
ImageGen process, 161, 162
Kconfig, 154
make process, 160
Sconfig, 155, 156

Coreboot file system
(CBFS), 52, 156

Coreboot romstage boot phase, 61,
62, 64, 65

C program, 213, 363
compilation, 357, 358
firmware development, 356
steps for C program

execution, 357
unique features, 356
Unix’s use, 356

Cross-debugging, 239

Cryptographic algorithms, 9, 294
C system programming

language, 367

D
Debug capabilities, 228

hardware-assisted debugging,
228, 229

software-based debugging, 229
Debugging, 131, 230
Debug services, 107
dediprog, 287
Device firmware, 1, 2, 70
Device tree, 56
Device Tree File System (DTFS), 52
Digital signal processing (DSP), 294
Direct Connect Interface (DCI),

244, 245
Dispatch mode, 31
Distributed VCS (DVCS), 180
DRAM controller initialization, 348
DRAM memory, 293
Dynamic configuration tool, 163
Dynamic RAM (DRAM), 292

E
EC chip, 113, 123
EC firmware architecture

callbacks, 106
CPU to EC communication

EC Interface, 109–112
host commands, 108

INDEX

388

debugging, 107
GPIOs, 107
modules, 107
tasks, 106

EDKII build infrastructure tools, 80
EDKII build tools

AutoGen process, 142
build environments setup, 136
build process, 141
build_rule.txt file, 139
CONF_PATH environment

variable, 137
control flow, 134, 135
environmental variables, 137
ImageGen process, 147–150
make process, 144–146
parsing tools, 142, 143
Python for building, 134
two sets of tools source code, 138
UEFI and PI specification, 134

EDKII Minimum Platform
Firmware for Intel
Platforms, 29, 30

EDKII Minimum Platform
Specification, 35

EDKII source code, 81, 127
EfiRom, 81
Embedded controller

(EC), 102–105
Embedded Controller

Interface, 109–112
Embedded systems, 227, 230, 234,

236, 293

Essential silicon initialization
code, 11

eXecute-In-Place (XIP), 156
eXtended Debug Port (XDP),

242, 243

F
Faster system response time, 330
Feature kernel, 308, 328
Field Replaceable Unit (FRU)

information, 92
Firmware, 273, 274

BMC firmware (see also Base
management
controller (BMC))

description, 1
device, 1
manageability firmware, 1
misconfiguration, 3
platform configuration, 286
in storage, 299
system, 1
as system firmware, 1
UEFI firmware (see Unified

Extensible Firmware
Interface (UEFI))

update and resiliency, 302
Firmware-centric innovations, 344
Firmware code, 1, 47
Firmware configuration interface,

168, 169
Firmware development, 178, 353
Firmware File Systems (FFSs), 33

EC firmware architecture (cont.)

INDEX

389

Firmware programming
standard, 218

Firmware projects, 367
Firmware security, 279
Firmware space running, 4
Firmware stack, 278
Firmware Support Package

(FSP), 12, 13
configuration data, 16–18
definition, 13
integration, 14

configuration, 14
eXecute-in-place (XIP)

components, 14
interfacing, 14, 15

Firmware volume drop-in
model, 33

Firmware vulnerabilities, 279
Flashing tools, 132

hardware-based, 171, 172
Servo, 172, 173
SPINOR programmer, 172

software-based, 172, 173
UEFI tools and utility, 174

Flash layout, 52, 53
Flashmap Descriptor language, 157
Flashtom tool, 173
fmap tool, 161
FSP API boot mode, 31
FSP drivers, 24–30
Functional testing, 302
Fuses, 295
Future hybrid system firmware, 28
Future system firmware, 305

Future system firmware,
fundamental principles

exploring hardware, 307
feature kernel concept, 308
innovative hardware

design, 309
open source, 307
performance, 306
security, 306
simplicity, 306

G
Gerrit

application, 204
code review, 204, 205, 208, 211
commit ID, 204
free web-based open source

software application, 204
fundamentals, 204
new patchset, 206

Git, 180
branching model, 183
commands, 196
commands and working

relationships, 185
data structure

blob object, 190–192
commit object, 187, 188
internals, 186
stage/cache index, 186
tree object, 188–191

distributed development,
181, 183

INDEX

390

distributed development
model, 181

DVCS, 180
file system, 181
free and open source

project, 180
and GitHub, 203
GitHub (see GitHub)
ID with commit message, 182
installation, Git on Windows,

193, 194
performance, 180
principles, 180
security, 182
SSH key, 194, 195
universal tool, 193
version control, 200

GitHub, 200
features, 201, 202
graphical user interface, 200
high-level GitHub work

model, 200
web-based Git repository

hosting service, 200
Git working model

local repository, 184
remote repository, 184
working directory, 185

Global descriptor table (GDT), 251
GNU Project Debugger (GDB),

270, 271
GOP driver stack

implementation, 79

Go programming language, 368
benefits, 368, 371
compiled language, 369
concurrency, 369
garbage collection, 369
mixed language, 369
modern programming

language, 368
modes, 370
open source, 370

H
Hardware, 274
Hardware-assisted debugging, 228

CPU register, 228
generic debugging, 228
ODM/OEM hardware-based

debugging, 229
SoC/CPU-based debugging, 228

Hardware-assisted debug tools, 233
generic debugging

oscilloscope, 234, 235
protocol analyzers, 236, 237

OxM-specific debugging (see
OxM-specific debugging)

SoC-specific debugging (see
SoC/CPU architecture-
specific debugging)

Hardware-based cryptographic
primitives, 294

Hardware-based debugging, 241
Hardware-based tools, 172

Servo, 172, 173

Git (cont.)

INDEX

391

SPINOR programmer, 172
Hardware-centric innovations, 344
Hardware components, 276
Hardware design, 342
Hardware limitations, 342
Header, 299
HID devices, 163
HiFive, 363
High-level system firmware

package structure, 134
High security module (HSM), 298
HII database, 164
Human Interface Infrastructure

(HII), 163, 164
Hybrid-firmware development

work model, 30
Hybrid system firmware

development, 46
Hybrid system firmware model, 11

bootloader, 12
coreboot using FSP

configuration data, 16–18
FSP communications using

APIs, 20–22
FSP drivers, 23–29
FSP integration, 14
FSP interfacing, 15

EDKII Minimum Platform
Firmware (see EDKII
Minimum Platform
Firmware for Intel
Platforms)

payload, 13
silicon reference code binary, 12

Hybrid work model, 11
Hygienic macros, 364, 365

I
I2C protocol analyzer, 237
IFWI layout, 347
ImageGen process, 140, 141, 146,

147, 159
In-band management system, 84
In-band remote management, 85
Independent BIOS vendors

(IBVs), 69
Independent hardware vendors

(IHVs), 70
Infrastructure tools, 131
init program, 368
Initialization code, 312, 338
Initialization vector, 73, 76
Integrated development

environment (IDE), 129,
215, 247

Integrity, 280, 289
Intelligent Chassis Management

Bus (ICMB), 91
Intelligent Platform Management

Bus/Bridge (IPMB), 91, 92
Intelligent Platform Management

Interface (IPMI), 90–92
Intel System Debugger, 249–251
Internal Forms Representation

(IFR), 165
Internet, 94, 273, 306
I/Os, 39, 114, 116, 118, 168, 294, 295

INDEX

392

J
Joint Test Action

Group (JTAG), 240
JTAG access port (JTAG-AP), 247
JTAG-based debug port, 240, 241
JTAG Debug Port (JTAG-DP),

241, 246
Just a Bunch of Disks (JBODs)

platforms, 88
Just a Bunch of Flash (JBOFs)

platforms, 88

K
Kconfig tool, 154
Keyboard-video-mouse (KVM), 86
Key performance indicator (KPI),

330, 367
KVM functionality, 90

L
Language, 356
Legacy system firmware, 163
LinkedIn, 200
LinuxBoot project, 2
Linux kernel, 67, 68, 84, 96, 99
Linux-like kernel, 367
LITE firmware

BIOS, 309, 310
design principle, 319

ACPI, 322–325
minimum CPU initialization,

321, 322

PCI device enumeration and
resource allocation, 317–320

typical boot flow, 313, 315
OCP, 310
OEM/ODMs, 310
PCI enumeration, 311
platform initialization, 311

Lower-level firmware operations, 9

M
Manageability controllers, 127
Manageability firmware, 1, 10, 47,

87, 90, 126
access to system resources, 7
closed source, 7
OSF project, 9
performance and flexibility, 8
remote administration, 6
Ring-3 firmware, 6
transparency, 8

Master attached flash sharing
(MAFS), 104

MECC AIC board design, 114
Memory, 292, 293
Memory access port (MEM-AP), 247
Memory-mapped hardware

registers, 362
Message authentication codes

(MACs), 280
Minimum Platform Architecture

(MPA), 29, 30, 33
core, 30
dispatch mode, 31, 32

INDEX

393

firmware stack, 30
high-level firmware stack, 29
min-tree, 37, 38
platform, 35–37
silicon initialization, 31
stage-based architecture (see

Minimum Platform Stage
approach)

UEFI Bootloader and FSP
Communications using
dispatch mode, 33–35

Minimum Platform Stage approach
advanced feature selection, 45, 46
Boot to OS, 43, 44
Boot to UI, 42, 43
features, 39
memory functional, 41, 42
minimal debug, 39, 41
optimization, 46
security enable, 44, 45

Min-tree, 37, 38
Min-tree development model, 37
Misconfiguration, 3
Mnemonics, 354
Modern embedded system

designs, 236
Modern firmware

development, 9, 367
Modern server motherboards, 86
Modern system firmware, 10, 327
Modern system programming

language, 356
Modular Embedded Control Card

(MECC), 114, 117, 126

Multiprocessor
initialization, 311

Multiprocessor (MP)
environment, 25, 335

Multithreaded system
firmware, 334–345

Multithreading, 335

N
Namespaces, 362
National Vulnerability Database

(NVD), 7
Network interface controllers

(NICs), 86
Non-hygienic macro system,

364, 365

O
OEM/ODMs, 310, 325
OEM platform design, 332, 333
OpenBMC project, 95–98
Open Compute Project (OCP),

36, 101, 310
Open source bootloaders, 11
Open source coreboot project

GitHub repository, 133
Open source device firmware

development
community support, 83
cost, 83
device firmware, 70
extensibility, 83

INDEX

394

legacy device firmware/option
ROM, 71–76

performance, 83
security, 83
UEFI OpROM, 77–82

Open Source EDKII project GitHub
repository, 133

Open source embedded controller
firmware
development 103–105

Open source firmware
development, 177, 316

Open source firmware (OSF), 3, 9,
10, 47, 70, 98, 100, 102, 126

Open source manageability
firmware development

BMC (see Baseboard
management
controller (BMC))

in-band management
system, 84, 85

out-of-band management, 85, 86
Open source system firmware

development
hybrid system firmware (see

Hybrid system
firmware model)

OEMs, 10
open source bootloaders, 11
open source firmware model, 10
operational models, 11
payload, 11

Open source system firmware
model, 11, 70

future system firmware, 47
oreboot (see also oreboot)
RISC-V, 47

Option ROM (OpROM), 71–77, 80,
127, 141, 147, 307

oreboot, 47
build infrastructure, 54
code structure, 49–51
coreboot project, 48
device tree, 56, 57
driver model, 58
flash layout, 52, 53
internals, 51
payload, 67–69
Rust language, 48
source code organization, 49
supports, 49

oreboot boot flow, 61
boot flow, definition, 60
Linux kernel, 60
process

bootblob, 61, 62, 64
payloader stage, 61, 66, 67
romstage boot phase, 61

oreboot mainboard code, 59
oreboot supports, 58
oreboot system firmware

project, 48
Oscilloscope-based

debugging, 234
OSF development, 18
OS loader/payload firmware, 13

Open source device firmware
development (cont.)

INDEX

395

Out-of-band management,
85–87, 102

Out-of-band remote
management, 86

OxM-specific debugging
AMIDebug Rx, 256
Closed Case Debug

(CCD), 259–261
XHCI Dbc, 256–258

P
Partial FSP configuration data

structure, 19
Patchset, 207
Payload, 326
Payloader stage, 66, 67
PCIe bus, 237
PCI enumeration, 311
PCI tree structure, 319
PEIM-PEIM interface (PPI), 28
PI Specification, 25
Position-independent

modules, 156
Preboot environment, 266
Pre-EFI Initialization Modules

(PEIMs), 33
Printed circuit boards (PCBs), 240
Protocol analyzers, 236, 237
Python-based tool, 19

Q
QueryMode() function, 80

R
RAM file system, 368
Rampayload/coreboot-Lite, 60
Read-on memory (ROM), 277, 278,

291, 296–298, 300
Real-time operating system

(RTOS), 6
Redfish, 95
Resource allocation, 311
Ring-3 firmware, 6
RISC-V-based embedded systems, 47
romstage, 61, 62, 64, 65
Rootkits, 275
Root of trust, 283, 297, 298, 300
RunBMC, 101, 102
Runtime services, 5
Rust, 359, 366
Rust macros, 365
Rust programming languages, 359,

360, 362

S
Satellite controllers, 91
SBL configuration parameters, 166
Sconfig tool, 155, 156
SecMain, 34
Secure Boot, 290, 297, 298, 300, 304
Secure computing system, 275
Security, 274

for firmware, 285, 286
for firmware update

process, 303

INDEX

396

Security assumptions, 285
Security assurance, 302
Security primer, 279
Security validation, 302
Sensor data record (SDR)

repository, 92
Serial UART, 265
Serial Wire Debug Port

(SW-DP), 246
Serial Wire Debug (SWD), 231, 242,

245, 246
Serial Wire/JTAG Debug Port

(SWJ-DP), 246
Servo, 172, 173, 259
SetMode() function, 80
Silicon, 31
Silicon initialization, 11, 12, 14–17,

21, 23, 31, 37
Silicon reference code binary, 12
Slave attached flash sharing

(SAFS), 104
SoC/CPU architecture-specific

debugging
cross-debugging, 239
hardware interface

daisy-chained
technique, 241

DCI, 244, 245
debug port, 240
debug setup, 239
specification of JTAG, 241
SWD, 245, 246
XDP, 242, 243

software interface

Arm Debugger, 252, 253
CodeXL, 248, 249
cross-debugging setup, 247
Intel System

Debugger, 249–251
Software, 274, 275
Software-assisted debugging

ACPI debug, 267
GDB, 270, 271
I/O-based checkpoint, 262, 264
preboot environment, 266
serial message/serial buffer,

265, 266
traditional breakpoints, 261, 262
WinDbg, 268–270

Software-based debugging, 229
ARM-based platform block

diagram, 231
subcategories, 230

Software-based tools, 173
Software bugs, 359
Software codes, 7
Software development kits

(SDKs), 129
Software stack, 277, 278
Source code management

(SCM), 178
features, 179
source control, 179
VCS (see Version control

software (VCS))
as version control, 178
version controlling

mechanism, 208–210

INDEX

397

SPI Flash, 5, 6, 52, 62, 64, 67, 104,
114, 119, 368

SPINOR memory, 156
SPI protocol analyzer, 237
Static configuration, 162
Static RAM (SRAM), 292,

335, 342–347
Subversion (SVN), 179, 180
System boot time, 366
System failures, 227
System firmware, 1, 5, 6, 69,

228, 354
fundamental principles (see

Future system firmware,
fundamental principles)

System firmware development, 10,
23, 48, 70, 227

model, 130
tools, 129, See Tools

System firmware packages, 132
System Management Mode

(SMM), 5, 6
attacks on computer systems, 6
hardware-based method, 6
software-based method, 6
on x26-based platforms, 5

System programming
language, 353

C, 356 (see C program)
C and C++, 358
characteristics, 353
history, 354, 355
memory safety, 359
in modern hardware, 359

System protection rings, 4
Systems on chip (SoCs), 5, 240

T
Temporary memory, 309, 335, 342,

343, 347, 348
Test Access Port (TAP), 240
Threat modeling, 283
Tianocore, 30
Tooling process, 132
Tools

build tools, 131
configuration tools (See also

Configuration tools)
debugging tools, 131
flashing tools (See also

Flashing tools)
history, 129
IDEs, 129
infrastructure tools, 131

TP-Link, 84
Traditional

breakpoints, 261
Traditional test tools, 237
Transparency, 8
Transparency firmware

development model, 9
Trusted Computing Boundary

(TCB), 273, 329, 367
typedefs, 219
Type-safe support, 368, 369, 371
Typical computing system

firmware inventory, 2

INDEX

398

U
u-bmc, 98–100
UEFI firmware

development, 325
UEFI PI bootloader, 32
UEFI pre-boot services, 174
UEFI tools, 174
Unified Extensible Firmware

Interface (UEFI), 29, 309,
310, 313, 316, 317, 322, 343,
349, 350

Unix’s use of C, 356
U-root, 368, 370, 371
USB debug application, 258
USB protocol analyzer, 237

V
Version control, 178
Version control repository hosting

service, 200
Version control software (VCS)

for firmware development, 179
Git (see Git)
SVN, 179, 180

VESA BIOS Extensions (VBE),
72–74, 76, 80

Video BIOS (VBIOS), 71, 72, 75, 77

Virtual Network Computing
(VNC), 84

Visual Forms Representation
(VFR), 165

W
Windows 10X, 333
Windows Debugger (WinDbg),

231, 268–270
Wireless routers, 84

X
x86-based platform, 363
X86-based QEMU emulation, 320
x86 platform, 341–343
XHCI debug capability

(Dbc), 256–258

Y
YAML-based configuration, 166–168

Z
Zephyr-based EC firmware,

115–118, 120, 123–126
Zephyr OS, 113–115

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	About the Foreword Author
	Foreword by Christian Walter
	Preface
	Acknowledgments
	Introduction
	Chapter 1: Spotlight on Future Firmware
	Migrating to Open Source Firmware
	Ring -1: System Firmware
	Ring -2: System Management Mode
	Ring -3: Manageability Firmware

	Open Source System Firmware Development
	Hybrid System Firmware Model
	coreboot Using Firmware Support Package
	FSP Integration
	FSP Interfacing
	FSP Configuration Data
	Open Source Challenges with FSP Configuration Data

	coreboot and FSP Communications Using APIs
	FSP Drivers
	Mitigate Open Source Challenges with FSP Driver

	EDKII Minimum Platform Firmware
	Minimum Platform Architecture
	Dispatch Mode
	Platform

	Min-Tree
	Minimum Platform Stage Approach
	Stage I: Minimal Debug
	Stage II: Memory Functional
	Stage III: Boot to UI
	Stage IV: Boot to OS
	Stage V: Security Enable
	Stage VI: Advanced Feature Selection
	Stage VII: Optimization

	Open Source System Firmware Model
	oreboot = Coreboot - C + Much More
	oreboot Code Structure
	oreboot Internals
	Flash Layout
	Build Infrastructure
	Device Tree
	Driver Model

	oreboot Boot Flow
	Bootblob
	Romstage
	Payloader Stage
	Payload

	Open Source Device Firmware Development
	Legacy Device Firmware/Option ROM
	UEFI OpROM
	Why Is Open Source Device Firmware Needed?

	Open Source Manageability Firmware Development
	Baseboard Management Controller
	Intelligent Platform Management Interface
	OpenBMC
	u-bmc
	RunBMC

	Zephyr OS: An Open Source Embedded Controller Firmware Development
	Embedded Controller
	EC Firmware Architecture
	Tasks
	Callbacks
	GPIOs
	Modules
	Debugging
	Host CPU to EC Communication
	Host Commands
	Embedded Controller Interface
	Shared Memory Map

	Challenges with Closed Source EC Firmware
	Modular Embedded Controller Card
	Zephyr-Based EC Firmware
	Power Sequencing
	Peripheral Management
	Button Array Devices
	Switches

	System Management Controller
	Thermal Management
	Power Monitoring
	Battery Management
	ACPI Host Interface

	Keyboard Controller
	Keyboard Scan Matrix

	Summary

	Chapter 2: Tools
	Build Tools
	EDKII Build Tools and Process
	Build Environment Setup
	Build Binaries
	Build Process
	AutoGen Process
	Make Process
	ImageGen Process

	coreboot Build Tools and Process
	Build Environment Setup
	Build Binaries
	Kconfig
	Sconfig
	cbfstool

	Build Process
	AutoGen Process
	Make Process
	ImageGen Process

	Configuration Tools
	Human Interface Infrastructure
	YAML-Based Configuration
	Firmware Configuration Interface
	Binary Configuration Tool (BCT)/Config Editor

	Flashing Tools
	Hardware-Based Tools
	SPINOR Programmer
	Servo
	Software-Based Tools
	Flashrom
	UEFI Tools and Utility

	Summary

	Chapter 3: Infrastructure for Building Your Own Firmware
	Overview of Source Control Management
	Version Control System
	Subversion
	Git
	Git Working Model
	Data Structure
	Setting Up Git
	Installing Git on Windows
	Installing Git on Linux
	Create and Register Git SSH

	Git Cheat Sheet

	Version Control Repository Hosting Service
	GitHub

	Code Review Application
	Gerrit

	Best Known Mechanism of Source Code Management

	Code of Conduct
	Coding Standard
	Indentation
	Maximum Columns per Line
	Using Braces
	Need for Spaces
	Naming Conventions
	Typedefs
	Commenting
	Write a Good Commit Message

	Summary

	Chapter 4: System Firmware Debugging
	Hardware-Assisted Debugging
	Generic Debugging
	Oscilloscope
	Protocol Analyzers

	SoC-Specific Debugging
	Hardware Interface
	eXtended Debug Port
	Direct Connect Interface
	Serial Wire Debug

	Software Interface
	CodeXL
	Intel System Debugger
	Arm Debugger

	OxM-Secific Debugging
	AMIDebug Rx
	XHCI Debug Capability
	Closed Case Debug

	Software-Assisted Debugging
	Traditional Breakpoint
	I/O-Based Checkpoint
	Serial Message or Serial Buffer
	Preboot Environment
	ACPI Debug
	Windows Debugger
	GNU Debugger

	Summary

	Chapter 5: Security at Its Core
	Revisiting the Definition of Firmware with a Security Mindset
	Why Is Firmware Security Required?
	Threats and Issues
	Security Primer
	Terminology
	Integrity
	Confidentiality
	Authenticity
	Anti-replay
	Availability
	Anti-rollback
	Root of Trust
	Threat Modeling
	Adversary Modeling
	Security Assumptions
	Approach to Security Design for Firmware

	Platform Configuration for Firmware
	Firmware with Security Mindset in a Computing System
	Access Control
	Secure Boot or Firmware Authentication
	Security Assurance
	Firmware Update and Resiliency

	Summary

	Chapter 6: Looking at the Future of System Firmware
	Designing LITE Firmware
	Design Principle
	Conclusion

	Designing a Feature Kernel
	Design Principle
	Conclusion

	Design Multithreaded System Firmware
	Design Principles
	Conclusion

	Innovation in Hardware Design
	Design Principles
	Hardware Design Principles
	Firmware Design Principle

	Conclusion

	Summary

	Appendix A: The Evolution of System Programming Languages
	The History of System Programming Languages
	System Programming Languages Today
	The Future of System Programming Languages

	Appendix B: initramfs: A Call for Type-Safe Languages
	Glossary
	Reference
	Websites
	References for Chapter 5
	Books, Conferences, Journals, and Papers

	Index

